GPT Store Mining and Analysis
- URL: http://arxiv.org/abs/2405.10210v1
- Date: Thu, 16 May 2024 16:00:35 GMT
- Title: GPT Store Mining and Analysis
- Authors: Dongxun Su, Yanjie Zhao, Xinyi Hou, Shenao Wang, Haoyu Wang,
- Abstract summary: The GPT Store serves as a marketplace for Generative Pre-trained Transformer (GPT) models.
This study focuses on the categorization of GPTs by topic, factors influencing GPT popularity, and the potential security risks.
Our findings aim to enhance understanding of the GPT ecosystem, providing valuable insights for future research, development, and policy-making in generative AI.
- Score: 4.835306415626808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a pivotal extension of the renowned ChatGPT, the GPT Store serves as a dynamic marketplace for various Generative Pre-trained Transformer (GPT) models, shaping the frontier of conversational AI. This paper presents an in-depth measurement study of the GPT Store, with a focus on the categorization of GPTs by topic, factors influencing GPT popularity, and the potential security risks. Our investigation starts with assessing the categorization of GPTs in the GPT Store, analyzing how they are organized by topics, and evaluating the effectiveness of the classification system. We then examine the factors that affect the popularity of specific GPTs, looking into user preferences, algorithmic influences, and market trends. Finally, the study delves into the security risks of the GPT Store, identifying potential threats and evaluating the robustness of existing security measures. This study offers a detailed overview of the GPT Store's current state, shedding light on its operational dynamics and user interaction patterns. Our findings aim to enhance understanding of the GPT ecosystem, providing valuable insights for future research, development, and policy-making in generative AI.
Related papers
- GPTZoo: A Large-scale Dataset of GPTs for the Research Community [5.1875389249043415]
GPTZoo is a large-scale dataset comprising 730,420 GPT instances.
Each instance includes rich metadata with 21 attributes describing its characteristics, as well as instructions, knowledge files, and third-party services utilized during its development.
arXiv Detail & Related papers (2024-05-24T15:17:03Z) - Reconstruct Your Previous Conversations! Comprehensively Investigating Privacy Leakage Risks in Conversations with GPT Models [20.92843974858305]
GPT models are increasingly being used for task optimization.
In this paper, we introduce a straightforward yet potent Conversation Reconstruction Attack.
We present two advanced attacks targeting improved reconstruction of past conversations.
arXiv Detail & Related papers (2024-02-05T13:18:42Z) - MapGPT: Map-Guided Prompting with Adaptive Path Planning for Vision-and-Language Navigation [73.81268591484198]
Embodied agents equipped with GPT have exhibited extraordinary decision-making and generalization abilities across various tasks.
We present a novel map-guided GPT-based agent, dubbed MapGPT, which introduces an online linguistic-formed map to encourage global exploration.
Benefiting from this design, we propose an adaptive planning mechanism to assist the agent in performing multi-step path planning based on a map.
arXiv Detail & Related papers (2024-01-14T15:34:48Z) - Opening A Pandora's Box: Things You Should Know in the Era of Custom GPTs [27.97654690288698]
We conduct a comprehensive analysis of the security and privacy issues arising from the custom GPT platform by OpenAI.
Our systematic examination categorizes potential attack scenarios into three threat models based on the role of the malicious actor.
We identify 26 potential attack vectors, with 19 being partially or fully validated in real-world settings.
arXiv Detail & Related papers (2023-12-31T16:49:12Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
We analyze the latest model, GPT-4V, to deepen the understanding of LMMs.
GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs makes it a powerful multimodal generalist system.
GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods.
arXiv Detail & Related papers (2023-09-29T17:34:51Z) - Is ChatGPT Involved in Texts? Measure the Polish Ratio to Detect
ChatGPT-Generated Text [48.36706154871577]
We introduce a novel dataset termed HPPT (ChatGPT-polished academic abstracts)
It diverges from extant corpora by comprising pairs of human-written and ChatGPT-polished abstracts instead of purely ChatGPT-generated texts.
We also propose the "Polish Ratio" method, an innovative measure of the degree of modification made by ChatGPT compared to the original human-written text.
arXiv Detail & Related papers (2023-07-21T06:38:37Z) - SentimentGPT: Exploiting GPT for Advanced Sentiment Analysis and its
Departure from Current Machine Learning [5.177947445379688]
This study presents a thorough examination of various Generative Pretrained Transformer (GPT) methodologies in sentiment analysis.
Three primary strategies are employed: 1) prompt engineering using the advanced GPT-3.5 Turbo, 2) fine-tuning GPT models, and 3) an inventive approach to embedding classification.
The research yields detailed comparative insights among these strategies and individual GPT models, revealing their unique strengths and potential limitations.
arXiv Detail & Related papers (2023-07-16T05:33:35Z) - DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT
Models [92.6951708781736]
This work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5.
We find that GPT models can be easily misled to generate toxic and biased outputs and leak private information.
Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps.
arXiv Detail & Related papers (2023-06-20T17:24:23Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
This study provides a comprehensive and contemporary assessment of the most recent techniques in ChatGPT detection.
We have curated a benchmark dataset consisting of prompts from ChatGPT and humans, including diverse questions from medical, open Q&A, and finance domains.
Our evaluation results demonstrate that none of the existing methods can effectively detect ChatGPT-generated content.
arXiv Detail & Related papers (2023-04-04T03:04:28Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
We provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric.
Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments.
We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
arXiv Detail & Related papers (2023-03-07T16:57:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.