Quantum State Learning Implies Circuit Lower Bounds
- URL: http://arxiv.org/abs/2405.10242v1
- Date: Thu, 16 May 2024 16:46:27 GMT
- Title: Quantum State Learning Implies Circuit Lower Bounds
- Authors: Nai-Hui Chia, Daniel Liang, Fang Song,
- Abstract summary: We establish connections between state tomography, pseudorandomness, quantum state, circuit lower bounds.
We show that even slightly non-trivial quantum state tomography algorithms would lead to new statements about quantum state synthesis.
- Score: 2.2667044928324747
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We establish connections between state tomography, pseudorandomness, quantum state synthesis, and circuit lower bounds. In particular, let $\mathfrak{C}$ be a family of non-uniform quantum circuits of polynomial size and suppose that there exists an algorithm that, given copies of $|\psi \rangle$, distinguishes whether $|\psi \rangle$ is produced by $\mathfrak{C}$ or is Haar random, promised one of these is the case. For arbitrary fixed constant $c$, we show that if the algorithm uses at most $O(2^{n^c})$ time and $2^{n^{0.99}}$ samples then $\mathsf{stateBQE} \not\subset \mathsf{state}\mathfrak{C}$. Here $\mathsf{stateBQE} := \mathsf{stateBQTIME}[2^{O(n)}]$ and $\mathsf{state}\mathfrak{C}$ are state synthesis complexity classes as introduced by Rosenthal and Yuen (ITCS 2022), which capture problems with classical inputs but quantum output. Note that efficient tomography implies a similarly efficient distinguishing algorithm against Haar random states, even for nearly exponential-time algorithms. Because every state produced by a polynomial-size circuit can be learned with $2^{O(n)}$ samples and time, or $O(n^{\omega(1)})$ samples and $2^{O(n^{\omega(1)})}$ time, we show that even slightly non-trivial quantum state tomography algorithms would lead to new statements about quantum state synthesis. Finally, a slight modification of our proof shows that distinguishing algorithms for quantum states can imply circuit lower bounds for decision problems as well. This help sheds light on why time-efficient tomography algorithms for non-uniform quantum circuit classes has only had limited and partial progress. Our work parallels results by Arunachalam et al. (FOCS 2021) that revealed a similar connection between quantum learning of Boolean functions and circuit lower bounds for classical circuit classes, but modified for the purposes of state tomography and state synthesis.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - From Bit-Parallelism to Quantum String Matching for Labelled Graphs [0.0]
Many problems that can be solved in quadratic time have bit-parallel speed-ups with factor $w$, where $w$ is the computer word size.
We show that a simple bit-parallel algorithm on such restricted family of graphs can indeed be converted into a realistic quantum algorithm.
arXiv Detail & Related papers (2023-02-06T15:14:34Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Quantum Algorithm for Fidelity Estimation [8.270684567157987]
For two unknown mixed quantum states $rho$ and $sigma$ in an $N$-dimensional space, computing their fidelity $F(rho,sigma)$ is a basic problem.
We propose a quantum algorithm that solves this problem in $namepoly(log (N), r, 1/varepsilon)$ time.
arXiv Detail & Related papers (2021-03-16T13:57:01Z) - Quantum learning algorithms imply circuit lower bounds [7.970954821067043]
We establish the first general connection between the design of quantum algorithms and circuit lower bounds.
Our proof builds on several works in learning theory, pseudorandomness, and computational complexity.
arXiv Detail & Related papers (2020-12-03T14:03:20Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
We present a quantum algorithm to solve systems of linear equations of the form $Amathbfx=mathbfb$.
The algorithm achieves an exponential improvement with respect to $N$ over classical methods.
arXiv Detail & Related papers (2020-09-09T18:00:09Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Quantum $k$-nearest neighbors algorithm [0.0]
We present a quantum analog of classical $k$NN $-$ quantum $k$NN (Q$k$NN) $-$ based on fidelity as the similarity measure.
Unlike classical $k$NN and existing quantum $k$NN algorithms, the proposed algorithm can be directly used on quantum data.
arXiv Detail & Related papers (2020-03-20T10:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.