Safeguarding Vision-Language Models Against Patched Visual Prompt Injectors
- URL: http://arxiv.org/abs/2405.10529v2
- Date: Sat, 24 Aug 2024 13:28:45 GMT
- Title: Safeguarding Vision-Language Models Against Patched Visual Prompt Injectors
- Authors: Jiachen Sun, Changsheng Wang, Jiongxiao Wang, Yiwei Zhang, Chaowei Xiao,
- Abstract summary: Vision-language models (VLMs) offer innovative ways to combine visual and textual data for enhanced understanding and interaction.
Patch-based adversarial attack is considered the most realistic threat model in physical vision applications.
We introduce SmoothVLM, a defense mechanism rooted in smoothing techniques, to protectVLMs from the threat of patched visual prompt injectors.
- Score: 31.383591942592467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models have become increasingly prominent, also signaling a shift towards multimodality as the next frontier in artificial intelligence, where their embeddings are harnessed as prompts to generate textual content. Vision-language models (VLMs) stand at the forefront of this advancement, offering innovative ways to combine visual and textual data for enhanced understanding and interaction. However, this integration also enlarges the attack surface. Patch-based adversarial attack is considered the most realistic threat model in physical vision applications, as demonstrated in many existing literature. In this paper, we propose to address patched visual prompt injection, where adversaries exploit adversarial patches to generate target content in VLMs. Our investigation reveals that patched adversarial prompts exhibit sensitivity to pixel-wise randomization, a trait that remains robust even against adaptive attacks designed to counteract such defenses. Leveraging this insight, we introduce SmoothVLM, a defense mechanism rooted in smoothing techniques, specifically tailored to protect VLMs from the threat of patched visual prompt injectors. Our framework significantly lowers the attack success rate to a range between 0% and 5.0% on two leading VLMs, while achieving around 67.3% to 95.0% context recovery of the benign images, demonstrating a balance between security and usability.
Related papers
- Chain of Attack: On the Robustness of Vision-Language Models Against Transfer-Based Adversarial Attacks [34.40254709148148]
Pre-trained vision-language models (VLMs) have showcased remarkable performance in image and natural language understanding.
Their potential safety and robustness issues raise concerns that adversaries may evade the system and cause these models to generate toxic content through malicious attacks.
We present Chain of Attack (CoA), which iteratively enhances the generation of adversarial examples based on the multi-modal semantic update.
arXiv Detail & Related papers (2024-11-24T05:28:07Z) - Towards Adversarially Robust Vision-Language Models: Insights from Design Choices and Prompt Formatting Techniques [12.907116223796201]
Vision-Language Models (VLMs) have witnessed a surge in both research and real-world applications.
This work systematically investigates the impact of model design choices on the adversarial robustness of VLMs against image-based attacks.
arXiv Detail & Related papers (2024-07-15T18:00:01Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Adversarial Prompt Tuning for Vision-Language Models [86.5543597406173]
Adversarial Prompt Tuning (AdvPT) is a technique to enhance the adversarial robustness of image encoders in Vision-Language Models (VLMs)
We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques.
arXiv Detail & Related papers (2023-11-19T07:47:43Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
We show that the continuous and high-dimensional nature of the visual input makes it a weak link against adversarial attacks.
We exploit visual adversarial examples to circumvent the safety guardrail of aligned LLMs with integrated vision.
Our study underscores the escalating adversarial risks associated with the pursuit of multimodality.
arXiv Detail & Related papers (2023-06-22T22:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.