Fast transport and splitting of spin-orbit-coupled spin-1 Bose-Einstein Condensates
- URL: http://arxiv.org/abs/2405.10727v2
- Date: Mon, 20 May 2024 06:11:31 GMT
- Title: Fast transport and splitting of spin-orbit-coupled spin-1 Bose-Einstein Condensates
- Authors: Yaning Xu, Yuanyuan Chen, Xi Chen,
- Abstract summary: We investigate the dynamics of tunable spin-orbit-coupled spin-1 Bose-Einstein condensates confined within a harmonic trap.
We design time-dependent trap trajectories and spin-orbit-coupling strength to facilitate fast transport with simultaneous spin flip.
We also showcase the creation of spin-dependent coherent states via engineering the spin-orbit-coupling strength.
- Score: 10.46036966932795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we investigate the dynamics of tunable spin-orbit-coupled spin-1 Bose-Einstein condensates confined within a harmonic trap, focusing on rapid transport, spin manipulation, and splitting dynamics. Using shortcuts to adiabaticity, we design time-dependent trap trajectories and spin-orbit-coupling strength to facilitate fast transport with simultaneous spin flip. Additionally, we showcase the creation of spin-dependent coherent states via engineering the spin-orbit-coupling strength. To deepen our understanding, we elucidate non-adiabatic transport and associated spin dynamics, contrasting them with simple scenarios characterized by constant spin-orbit coupling and trap velocity. Furthermore, we discuss the transverse Zeeman potential and nonlinear effect induced by interatomic interactions using the Gross-Pitaevskii equation, highlighting the stability and feasibility of the proposed protocols for the state-of-the-art experiments with cold atoms.
Related papers
- Spin Rotations in a Bose-Einstein Condensate Driven by Counterflow and
Spin-independent Interactions [0.0]
We observe spin rotations caused by atomic collisions in a non-equilibrium Bose-condensed gas of $87$Rb.
A local magnetodynamic model captures the salient features of the observed spin textures.
arXiv Detail & Related papers (2023-08-30T14:46:50Z) - Longitudinal coupling between electrically driven spin-qubits and a resonator [0.0]
We study spin qubits confined in quantum dots at zero magnetic fields that are driven periodically by electrical fields and are coupled to a microwave resonator.
We find both transverse and longitudinal couplings between the Floquet spin qubit and the resonator, which can be selectively activated by modifying the driving frequency.
arXiv Detail & Related papers (2023-01-24T17:42:41Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Tunable itinerant spin dynamics with polar molecules [2.830197032154302]
Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field.
Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics.
arXiv Detail & Related papers (2022-08-03T16:57:36Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Controlling atomic spin-mixing via multiphoton transitions in a cavity [9.689132866315152]
We control spin-mixing dynamics in a gas of spinor atoms using two off-resonant Raman transition pathways and a bichromatic pump laser.
The Quench and driving dynamics of the atomic collective spin are shown to be controllable on a faster time scale than in existing experiments.
arXiv Detail & Related papers (2022-04-20T16:43:53Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Dynamical preparation of stripe states in spin-orbit coupled gases [0.0]
In spinor Bose-Einstein condensates, spin-changing collisions are a remarkable proxy to coherently realize macroscopic many-body quantum states.
We show that, at weak couplings, such modulation of the collisions leads to an effective Hamiltonian.
We propose a robust protocol to coherently drive the spin-orbit coupled condensate into the ferromagnetic stripe phase.
arXiv Detail & Related papers (2021-01-20T18:54:53Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.