Data-Driven Symbol Detection for Intersymbol Interference Channels with Bursty Impulsive Noise
- URL: http://arxiv.org/abs/2405.10814v1
- Date: Fri, 17 May 2024 14:35:09 GMT
- Title: Data-Driven Symbol Detection for Intersymbol Interference Channels with Bursty Impulsive Noise
- Authors: Boris Karanov, Chin-Hung Chen, Yan Wu, Alex Young, Wim van Houtum,
- Abstract summary: We developed machine learning approaches for data-driven trellis-based soft symbol detection in coded transmission over intersymbol interference (ISI) channels.
This enabled us to obtain optimized detectors based on the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm.
We demonstrated the viability of a hybrid NN and HMM BCJR detection where NN is used for learning the likelihoods, while the state transitions are optimized via HMM.
- Score: 1.9462217839524345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We developed machine learning approaches for data-driven trellis-based soft symbol detection in coded transmission over intersymbol interference (ISI) channels in presence of bursty impulsive noise (IN), for example encountered in wireless digital broadcasting systems and vehicular communications. This enabled us to obtain optimized detectors based on the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm while circumventing the use of full channel state information (CSI) for computing likelihoods and trellis state transition probabilities. First, we extended the application of the neural network (NN)-aided BCJR, recently proposed for ISI channels with additive white Gaussian noise (AWGN). Although suitable for estimating likelihoods via labeling of transmission sequences, the BCJR-NN method does not provide a framework for learning the trellis state transitions. In addition to detection over the joint ISI and IN states we also focused on another scenario where trellis transitions are not trivial: detection for the ISI channel with AWGN with inaccurate knowledge of the channel memory at the receiver. Without access to the accurate state transition matrix, the BCJR- NN performance significantly degrades in both settings. To this end, we devised an alternative approach for data-driven BCJR detection based on the unsupervised learning of a hidden Markov model (HMM). The BCJR-HMM allowed us to optimize both the likelihood function and the state transition matrix without labeling. Moreover, we demonstrated the viability of a hybrid NN and HMM BCJR detection where NN is used for learning the likelihoods, while the state transitions are optimized via HMM. While reducing the required prior channel knowledge, the examined data-driven detectors with learned trellis state transitions achieve bit error rates close to the optimal full CSI-based BCJR, significantly outperforming detection with inaccurate CSI.
Related papers
- TBSN: Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising [94.09442506816724]
Blind-spot networks (BSN) have been prevalent network architectures in self-supervised image denoising (SSID)
We present a transformer-based blind-spot network (TBSN) by analyzing and redesigning the transformer operators that meet the blind-spot requirement.
For spatial self-attention, an elaborate mask is applied to the attention matrix to restrict its receptive field, thus mimicking the dilated convolution.
For channel self-attention, we observe that it may leak the blind-spot information when the channel number is greater than spatial size in the deep layers of multi-scale architectures.
arXiv Detail & Related papers (2024-04-11T15:39:10Z) - On the Robustness of Deep Learning-aided Symbol Detectors to Varying
Conditions and Imperfect Channel Knowledge [1.9107347888374506]
This paper expands upon existing literature to encompass a variety of imperfect channel knowledge cases that appear in real-world transmissions.
BCJRNet significantly outperforms the conventional BCJR algorithm for stationary transmission scenarios.
Our results also show the importance of memory assumptions for conventional BCJR and BCJRNet.
arXiv Detail & Related papers (2024-01-23T10:55:29Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - Blind Coherent Preamble Detection via Neural Networks [2.2063018784238984]
We propose a neural network (NN) sequence detector and timing advanced estimator.
We do not replace the whole process of preamble detection by a NN.
We propose to use NN only for textitblind coherent combining of the signals in the detector to compensate for the channel effect.
arXiv Detail & Related papers (2021-09-30T09:53:49Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Neural Network-Aided BCJR Algorithm for Joint Symbol Detection and
Channel Decoding [3.7315964084413173]
A hybrid manner of BCJRNet symbol detection is proposed to combine the advantages of the BCJR algorithm and neural networks.
A dedicated neural network model is proposed to replace the channel-model-based computation of the BCJR receiver.
arXiv Detail & Related papers (2020-05-30T10:25:58Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.