Using Degeneracy in the Loss Landscape for Mechanistic Interpretability
- URL: http://arxiv.org/abs/2405.10927v2
- Date: Mon, 20 May 2024 16:47:34 GMT
- Title: Using Degeneracy in the Loss Landscape for Mechanistic Interpretability
- Authors: Lucius Bushnaq, Jake Mendel, Stefan Heimersheim, Dan Braun, Nicholas Goldowsky-Dill, Kaarel Hänni, Cindy Wu, Marius Hobbhahn,
- Abstract summary: Mechanistic Interpretability aims to reverse engineer the algorithms implemented by neural networks by studying their weights and activations.
An obstacle to reverse engineering neural networks is that many of the parameters inside a network are not involved in the computation being implemented by the network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mechanistic Interpretability aims to reverse engineer the algorithms implemented by neural networks by studying their weights and activations. An obstacle to reverse engineering neural networks is that many of the parameters inside a network are not involved in the computation being implemented by the network. These degenerate parameters may obfuscate internal structure. Singular learning theory teaches us that neural network parameterizations are biased towards being more degenerate, and parameterizations with more degeneracy are likely to generalize further. We identify 3 ways that network parameters can be degenerate: linear dependence between activations in a layer; linear dependence between gradients passed back to a layer; ReLUs which fire on the same subset of datapoints. We also present a heuristic argument that modular networks are likely to be more degenerate, and we develop a metric for identifying modules in a network that is based on this argument. We propose that if we can represent a neural network in a way that is invariant to reparameterizations that exploit the degeneracies, then this representation is likely to be more interpretable, and we provide some evidence that such a representation is likely to have sparser interactions. We introduce the Interaction Basis, a tractable technique to obtain a representation that is invariant to degeneracies from linear dependence of activations or Jacobians.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training.
It is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby.
It can be combined with both discriminative and generative neural models.
arXiv Detail & Related papers (2024-05-12T22:18:25Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Sparse Autoencoders Find Highly Interpretable Features in Language
Models [0.0]
Polysemanticity prevents us from identifying concise, human-understandable explanations for what neural networks are doing internally.
We use sparse autoencoders to reconstruct the internal activations of a language model.
Our method may serve as a foundation for future mechanistic interpretability work.
arXiv Detail & Related papers (2023-09-15T17:56:55Z) - Unsupervised Learning of Invariance Transformations [105.54048699217668]
We develop an algorithmic framework for finding approximate graph automorphisms.
We discuss how this framework can be used to find approximate automorphisms in weighted graphs in general.
arXiv Detail & Related papers (2023-07-24T17:03:28Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
This manuscript explores how properties of functions learned by neural networks of depth greater than two layers affect predictions.
Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs.
arXiv Detail & Related papers (2023-05-24T22:10:12Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Robust Generalization of Quadratic Neural Networks via Function
Identification [19.87036824512198]
Generalization bounds from learning theory often assume that the test distribution is close to the training distribution.
We show that for quadratic neural networks, we can identify the function represented by the model even though we cannot identify its parameters.
arXiv Detail & Related papers (2021-09-22T18:02:00Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
Deep convolutional neural networks have achieved unprecedented performance in various computer vision tasks.
We propose a sparse coding interpretation of neural networks that have ReLU activation.
We derive a complete convolutional neural network without normalization and pooling.
arXiv Detail & Related papers (2021-08-14T21:54:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.