Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery
- URL: http://arxiv.org/abs/2405.10948v1
- Date: Fri, 22 Mar 2024 08:38:27 GMT
- Title: Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery
- Authors: Guankun Wang, Long Bai, Wan Jun Nah, Jie Wang, Zhaoxi Zhang, Zhen Chen, Jinlin Wu, Mobarakol Islam, Hongbin Liu, Hongliang Ren,
- Abstract summary: We introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios.
We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset.
- Score: 15.47190687192761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Surgical Visual Question Answering (Surgical-VQA) and related region grounding have shown great promise for robotic and medical applications, addressing the critical need for automated methods in personalized surgical mentorship. However, existing models primarily provide simple structured answers and struggle with complex scenarios due to their limited capability in recognizing long-range dependencies and aligning multimodal information. In this paper, we introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios. Leveraging the pre-trained large vision-language model and specialized Visual Perception LoRA (VP-LoRA) blocks, our model excels in understanding complex visual-language tasks within surgical contexts. In addressing the visual grounding task, we propose the Token-Interaction (TIT) module, which strengthens the interaction between the grounding module and the language responses of the Large Visual Language Model (LVLM) after projecting them into the latent space. We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset, which sets new performance standards. Our work contributes to advancing the field of automated surgical mentorship by providing a context-aware solution.
Related papers
- OphCLIP: Hierarchical Retrieval-Augmented Learning for Ophthalmic Surgical Video-Language Pretraining [55.15365161143354]
OphCLIP is a hierarchical retrieval-augmented vision-language pretraining framework for ophthalmic surgical workflow understanding.
OphCLIP learns both fine-grained and long-term visual representations by aligning short video clips with detailed narrative descriptions and full videos with structured titles.
Our OphCLIP also designs a retrieval-augmented pretraining framework to leverage the underexplored large-scale silent surgical procedure videos.
arXiv Detail & Related papers (2024-11-23T02:53:08Z) - Surgical-LLaVA: Toward Surgical Scenario Understanding via Large Language and Vision Models [1.4042211166197214]
We introduce an LVLM specifically designed for surgical scenarios.
We establish a LVLM model, Surgical-LLaVA, fine-tuned on instruction following data of surgical scenarios.
Experiments demonstrate that Surgical-LLaVA exhibits impressive multi-modal chat abilities in surgical contexts.
arXiv Detail & Related papers (2024-10-13T07:12:35Z) - Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation [51.222684687924215]
Surgical video-language pretraining faces unique challenges due to the knowledge domain gap and the scarcity of multi-modal data.
We propose a hierarchical knowledge augmentation approach and a novel Procedure-Encoded Surgical Knowledge-Augmented Video-Language Pretraining framework to tackle these issues.
arXiv Detail & Related papers (2024-09-30T22:21:05Z) - LLaVA-Surg: Towards Multimodal Surgical Assistant via Structured Surgical Video Learning [15.646322352232819]
We create a new dataset, Surg-QA, consisting of 102,000 surgical video-instruction pairs.
We propose a novel two-stage question-answer generation pipeline with LLM to learn surgical knowledge.
We train LLaVA-Surg, a novel vision-language conversational assistant capable of answering open-ended questions about surgical videos.
arXiv Detail & Related papers (2024-08-15T07:00:20Z) - LLM-Assisted Multi-Teacher Continual Learning for Visual Question Answering in Robotic Surgery [57.358568111574314]
Patient data privacy often restricts the availability of old data when updating the model.
Prior CL studies overlooked two vital problems in the surgical domain.
This paper proposes addressing these problems with a multimodal large language model (LLM) and an adaptive weight assignment methodology.
arXiv Detail & Related papers (2024-02-26T15:35:24Z) - Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures [51.78027546947034]
Recent advancements in surgical computer vision have been driven by vision-only models, which lack language semantics.
We propose leveraging surgical video lectures from e-learning platforms to provide effective vision and language supervisory signals.
We address surgery-specific linguistic challenges using multiple automatic speech recognition systems for text transcriptions.
arXiv Detail & Related papers (2023-07-27T22:38:12Z) - CAT-ViL: Co-Attention Gated Vision-Language Embedding for Visual
Question Localized-Answering in Robotic Surgery [14.52406034300867]
A surgical Visual Question Localized-Answering (VQLA) system would be helpful for medical students and junior surgeons to learn and understand from recorded surgical videos.
We propose an end-to-end Transformer with the Co-Attention gaTed Vision-Language (CAT-ViL) embedding for VQLA in surgical scenarios.
The proposed method provides a promising solution for surgical scene understanding, and opens up a primary step in the Artificial Intelligence (AI)-based VQLA system for surgical training.
arXiv Detail & Related papers (2023-07-11T11:35:40Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Surgical-VQLA: Transformer with Gated Vision-Language Embedding for
Visual Question Localized-Answering in Robotic Surgery [18.248882845789353]
We develop a surgical question-answering system to facilitate robot-assisted surgical scene and activity understanding from recorded videos.
Most of the existing VQA methods require an object detector and regions based feature extractor to extract visual features and fuse them with the embedded text of the question for answer generation.
We propose Visual Question Localized-Answering in Robotic Surgery (Surgical-VQLA) to localize the specific surgical area during the answer prediction.
arXiv Detail & Related papers (2023-05-19T14:13:47Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
We take advantage of the latest computer vision methodologies for generating 3D graphs from camera views.
We then introduce the Multimodal Semantic Graph Scene (MSSG) which aims at providing unified symbolic and semantic representation of surgical procedures.
arXiv Detail & Related papers (2021-06-09T14:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.