A Model for Optimal Resilient Planning Subject to Fallible Actuators
- URL: http://arxiv.org/abs/2405.11402v1
- Date: Sat, 18 May 2024 22:07:38 GMT
- Title: A Model for Optimal Resilient Planning Subject to Fallible Actuators
- Authors: Kyle Baldes, Diptanil Chaudhuri, Jason M. O'Kane, Dylan A. Shell,
- Abstract summary: We formulate the problem of planning with actuators susceptible to failure within the Markov Decision Processes (MDP) framework.
The model captures utilization-driven malfunction and state-action dependent likelihoods of actuator failure.
We identify opportunities to save computation through re-use, exploiting the observation that configurations yield closely related problems.
- Score: 28.11583381961291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots incurring component failures ought to adapt their behavior to best realize still-attainable goals under reduced capacity. We formulate the problem of planning with actuators known a priori to be susceptible to failure within the Markov Decision Processes (MDP) framework. The model captures utilization-driven malfunction and state-action dependent likelihoods of actuator failure in order to enable reasoning about potential impairment and the long-term implications of impoverished future control. This leads to behavior differing qualitatively from plans which ignore failure. As actuators malfunction, there are combinatorially many configurations which can arise. We identify opportunities to save computation through re-use, exploiting the observation that differing configurations yield closely related problems. Our results show how strategic solutions are obtained so robots can respond when failures do occur -- for instance, in prudently scheduling utilization in order to keep critical actuators in reserve.
Related papers
- Adaptive Motion Generation Using Uncertainty-Driven Foresight Prediction [2.2120851074630177]
Uncertainty of environments has long been a difficult characteristic to handle, when performing real-world robot tasks.
This paper extended an existing predictive learning based robot control method, which employ foresight prediction using dynamic internal simulation.
The results showed that the proposed model adaptively diverged its motion through interaction with the door, whereas conventional methods failed to stably diverge.
arXiv Detail & Related papers (2024-10-01T15:13:27Z) - Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Motion Generators(BTMG) Approach for Failure Management [0.0]
We propose a novel approach that models recovery behaviors as adaptable robotic skills, leveraging the Behavior Trees and Motion Generators(BTMG) framework for policy representation.
We assess our methodology through a series of progressively challenging scenarios within a peg-in-a-hole task, demonstrating the approach's effectiveness in enhancing operational efficiency and task success rates in collaborative robotics settings.
arXiv Detail & Related papers (2024-04-09T08:56:43Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - Partially Observable Task and Motion Planning with Uncertainty and Risk Awareness [34.77182116081535]
Integrated task and motion planning (TAMP) has proven to be a valuable approach to generalizable long-horizon robotic manipulation and navigation problems.
These assumptions limit the ability of the planner to gather information and make decisions that are risk-aware.
We propose a strategy for TAMP with Uncertainty and Risk Awareness (TAMPURA) that is capable of efficiently solving long-horizon planning problems with initial-state and action outcome uncertainty.
arXiv Detail & Related papers (2024-03-15T16:42:14Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
We introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly.
L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors.
We show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty.
arXiv Detail & Related papers (2023-12-07T03:55:51Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Active learning for structural reliability analysis with multiple limit
state functions through variance-enhanced PC-Kriging surrogate models [0.0]
Existing active strategies for training surrogate models yield accurate structural reliability estimates.
We investigate the capability of active learning approaches for efficiently selecting training samples under a limited computational budget.
arXiv Detail & Related papers (2023-02-23T15:01:06Z) - Active Uncertainty Reduction for Safe and Efficient Interaction
Planning: A Shielding-Aware Dual Control Approach [9.07774184840379]
We present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm.
Our approach relies on sampling-based approximation of dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods.
arXiv Detail & Related papers (2023-02-01T01:34:48Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Contingencies from Observations: Tractable Contingency Planning with
Learned Behavior Models [82.34305824719101]
Humans have a remarkable ability to make decisions by accurately reasoning about future events.
We develop a general-purpose contingency planner that is learned end-to-end using high-dimensional scene observations.
We show how this model can tractably learn contingencies from behavioral observations.
arXiv Detail & Related papers (2021-04-21T14:30:20Z) - Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning [85.13138591433635]
The main drawbacks of input-output linearizing controllers are the need for precise dynamics models and not being able to account for input constraints.
In this paper, we address both challenges for the specific case of bipedal robot control by the use of reinforcement learning techniques.
arXiv Detail & Related papers (2020-04-15T18:15:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.