From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems
- URL: http://arxiv.org/abs/2405.11542v2
- Date: Thu, 23 May 2024 02:27:10 GMT
- Title: From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems
- Authors: Xin Li, Jingdong Zhang, Qunxi Zhu, Chengli Zhao, Xue Zhang, Xiaojun Duan, Wei Lin,
- Abstract summary: We propose a simulation-free framework for training neural ordinary differential equations (NODEs)
We employ the Fourier analysis to estimate temporal and potential high-order spatial gradients from noisy observational data.
Our approach outperforms state-of-the-art methods in terms of training time, dynamics prediction, and robustness.
- Score: 20.006163951844357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling complex systems using standard neural ordinary differential equations (NODEs) often faces some essential challenges, including high computational costs and susceptibility to local optima. To address these challenges, we propose a simulation-free framework, called Fourier NODEs (FNODEs), that effectively trains NODEs by directly matching the target vector field based on Fourier analysis. Specifically, we employ the Fourier analysis to estimate temporal and potential high-order spatial gradients from noisy observational data. We then incorporate the estimated spatial gradients as additional inputs to a neural network. Furthermore, we utilize the estimated temporal gradient as the optimization objective for the output of the neural network. Later, the trained neural network generates more data points through an ODE solver without participating in the computational graph, facilitating more accurate estimations of gradients based on Fourier analysis. These two steps form a positive feedback loop, enabling accurate dynamics modeling in our framework. Consequently, our approach outperforms state-of-the-art methods in terms of training time, dynamics prediction, and robustness. Finally, we demonstrate the superior performance of our framework using a number of representative complex systems.
Related papers
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
We propose an extension of Latent Dynamics Networks (LDNets) to create parameterized space-time surrogate models for multiscale and multiphysics sets of highly nonlinear differential equations on complex geometries.
LFLDNets employ a neurologically-inspired, sparse liquid neural network for temporal dynamics, relaxing the requirement of a numerical solver for time advancement and leading to superior performance in terms of parameters, accuracy, efficiency and learned trajectories.
arXiv Detail & Related papers (2024-08-19T09:14:25Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows [6.961408873053586]
We propose a new Stemporal Neural Operator (SFNO) that learns maps between Bochner spaces, and a new learning framework to address these issues.
This new paradigm leverages wisdom from traditional numerical PDE theory and techniques to refine the pipeline of commonly adopted end-to-end neural operator training and evaluations.
Numerical experiments on commonly used benchmarks for the 2D NSE demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers.
arXiv Detail & Related papers (2024-05-27T14:33:06Z) - Neural Network-Based Score Estimation in Diffusion Models: Optimization
and Generalization [12.812942188697326]
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness.
A key component of these models is to learn the score function through score matching.
Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy.
arXiv Detail & Related papers (2024-01-28T08:13:56Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Fourier Sensitivity and Regularization of Computer Vision Models [11.79852671537969]
We study the frequency sensitivity characteristics of deep neural networks using a principled approach.
We find that computer vision models are consistently sensitive to particular frequencies dependent on the dataset, training method and architecture.
arXiv Detail & Related papers (2023-01-31T10:05:35Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.