Approximation and Gradient Descent Training with Neural Networks
- URL: http://arxiv.org/abs/2405.11696v1
- Date: Sun, 19 May 2024 23:04:09 GMT
- Title: Approximation and Gradient Descent Training with Neural Networks
- Authors: G. Welper,
- Abstract summary: Recent work extends a neural tangent kernel (NTK) optimization argument to an under-parametrized regime.
This paper establishes analogous results for networks trained by gradient descent.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well understood that neural networks with carefully hand-picked weights provide powerful function approximation and that they can be successfully trained in over-parametrized regimes. Since over-parametrization ensures zero training error, these two theories are not immediately compatible. Recent work uses the smoothness that is required for approximation results to extend a neural tangent kernel (NTK) optimization argument to an under-parametrized regime and show direct approximation bounds for networks trained by gradient flow. Since gradient flow is only an idealization of a practical method, this paper establishes analogous results for networks trained by gradient descent.
Related papers
- Approximation Results for Gradient Descent trained Neural Networks [0.0]
The networks are fully connected constant depth increasing width.
The continuous kernel error norm implies an approximation under the natural smoothness assumption required for smooth functions.
arXiv Detail & Related papers (2023-09-09T18:47:55Z) - Speed Limits for Deep Learning [67.69149326107103]
Recent advancement in thermodynamics allows bounding the speed at which one can go from the initial weight distribution to the final distribution of the fully trained network.
We provide analytical expressions for these speed limits for linear and linearizable neural networks.
Remarkably, given some plausible scaling assumptions on the NTK spectra and spectral decomposition of the labels -- learning is optimal in a scaling sense.
arXiv Detail & Related papers (2023-07-27T06:59:46Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Approximation results for Gradient Descent trained Shallow Neural
Networks in $1d$ [0.0]
Two aspects of neural networks that have been extensively studied are their function approximation properties and their training by gradient descent methods.
In most of the current literature these weights are fully or partially hand-crafted but not necessarily their practical performance.
This paper balances these two demands and provides an approximation result for neural networks in $1d$ with non-weight optimization by gradient descent.
arXiv Detail & Related papers (2022-09-17T20:26:19Z) - Lifted Bregman Training of Neural Networks [28.03724379169264]
We introduce a novel mathematical formulation for the training of feed-forward neural networks with (potentially non-smooth) proximal maps as activation functions.
This formulation is based on Bregman and a key advantage is that its partial derivatives with respect to the network's parameters do not require the computation of derivatives of the network's activation functions.
We present several numerical results that demonstrate that these training approaches can be equally well or even better suited for the training of neural network-based classifiers and (denoising) autoencoders with sparse coding.
arXiv Detail & Related papers (2022-08-18T11:12:52Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
We show that gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations.
This is the first optimization-based separation result where the approximation benefits of the stronger architecture provably manifest in practice.
arXiv Detail & Related papers (2021-12-04T18:07:47Z) - FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning
Convergence Analysis [27.022551495550676]
This paper presents a new class of convergence analysis for FL, Learning Neural Kernel (FL-NTK), which corresponds to overterized Reparamterized ReLU neural networks trained by gradient descent in FL.
Theoretically, FL-NTK converges to a global-optimal solution at atrivial rate with properly tuned linear learning parameters.
arXiv Detail & Related papers (2021-05-11T13:05:53Z) - Convergence rates for gradient descent in the training of
overparameterized artificial neural networks with biases [3.198144010381572]
In recent years, artificial neural networks have developed into a powerful tool for dealing with a multitude of problems for which classical solution approaches.
It is still unclear why randomly gradient descent algorithms reach their limits.
arXiv Detail & Related papers (2021-02-23T18:17:47Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.