Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning
- URL: http://arxiv.org/abs/2405.11756v1
- Date: Mon, 20 May 2024 03:33:12 GMT
- Title: Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning
- Authors: Kai Gan, Tong Wei,
- Abstract summary: Semi-supervised learning (SSL) has witnessed remarkable progress, resulting in numerous method variations.
In this paper, we present a novel SSL approach named FineSSL that significantly addresses this limitation by adapting pre-trained foundation models.
We demonstrate that FineSSL sets a new state of the art for SSL on multiple benchmark datasets, reduces the training cost by over six times, and can seamlessly integrate various fine-tuning and modern SSL algorithms.
- Score: 4.137391543972184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning (SSL) has witnessed remarkable progress, resulting in the emergence of numerous method variations. However, practitioners often encounter challenges when attempting to deploy these methods due to their subpar performance. In this paper, we present a novel SSL approach named FineSSL that significantly addresses this limitation by adapting pre-trained foundation models. We identify the aggregated biases and cognitive deviation problems inherent in foundation models, and propose a simple yet effective solution by imposing balanced margin softmax and decoupled label smoothing. Through extensive experiments, we demonstrate that FineSSL sets a new state of the art for SSL on multiple benchmark datasets, reduces the training cost by over six times, and can seamlessly integrate various fine-tuning and modern SSL algorithms. The source code is available at https://github.com/Gank0078/FineSSL.
Related papers
- Reinforcement Learning-Guided Semi-Supervised Learning [20.599506122857328]
We propose a novel Reinforcement Learning Guided SSL method, RLGSSL, that formulates SSL as a one-armed bandit problem.
RLGSSL incorporates a carefully designed reward function that balances the use of labeled and unlabeled data to enhance generalization performance.
We demonstrate the effectiveness of RLGSSL through extensive experiments on several benchmark datasets and show that our approach achieves consistent superior performance compared to state-of-the-art SSL methods.
arXiv Detail & Related papers (2024-05-02T21:52:24Z) - Semi-supervised Learning with Deterministic Labeling and Large Margin
Projection [25.398314796157933]
The centrality and diversity of the labeled data are very influential to the performance of semi-supervised learning (SSL)
This study is to learn a kernelized large margin metric for a small amount of most stable and most divergent data that are recognized based on the OLF structure.
Attribute to this novel design, the accuracy and performance stableness of the SSL model based on OLF is significantly improved compared with its baseline methods.
arXiv Detail & Related papers (2022-08-17T04:09:35Z) - OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning [110.40285771431687]
Semi-supervised learning (SSL) is one of the dominant approaches to address the annotation bottleneck of supervised learning.
Recent SSL methods can effectively leverage a large repository of unlabeled data to improve performance while relying on a small set of labeled data.
This work introduces OpenLDN that utilizes a pairwise similarity loss to discover novel classes.
arXiv Detail & Related papers (2022-07-05T18:51:05Z) - A Strong Baseline for Semi-Supervised Incremental Few-Shot Learning [54.617688468341704]
Few-shot learning aims to learn models that generalize to novel classes with limited training samples.
We propose a novel paradigm containing two parts: (1) a well-designed meta-training algorithm for mitigating ambiguity between base and novel classes caused by unreliable pseudo labels and (2) a model adaptation mechanism to learn discriminative features for novel classes while preserving base knowledge using few labeled and all the unlabeled data.
arXiv Detail & Related papers (2021-10-21T13:25:52Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
Self-supervised learning is emerging as a new paradigm for making use of large amounts of unlabeled samples.
We provide a unified review of different ways of training graph neural networks (GNNs) using SSL.
Our treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms.
arXiv Detail & Related papers (2021-02-22T03:43:45Z) - End-to-end Generative Zero-shot Learning via Few-shot Learning [76.9964261884635]
State-of-the-art approaches to Zero-Shot Learning (ZSL) train generative nets to synthesize examples conditioned on the provided metadata.
We introduce an end-to-end generative ZSL framework that uses such an approach as a backbone and feeds its synthesized output to a Few-Shot Learning algorithm.
arXiv Detail & Related papers (2021-02-08T17:35:37Z) - On Data-Augmentation and Consistency-Based Semi-Supervised Learning [77.57285768500225]
Recently proposed consistency-based Semi-Supervised Learning (SSL) methods have advanced the state of the art in several SSL tasks.
Despite these advances, the understanding of these methods is still relatively limited.
arXiv Detail & Related papers (2021-01-18T10:12:31Z) - SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning [58.26384597768118]
SemiNLL is a versatile framework that combines SS strategies and SSL models in an end-to-end manner.
Our framework can absorb various SS strategies and SSL backbones, utilizing their power to achieve promising performance.
arXiv Detail & Related papers (2020-12-02T01:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.