General bounds on the quality of Bayesian coresets
- URL: http://arxiv.org/abs/2405.11780v2
- Date: Wed, 16 Oct 2024 20:30:47 GMT
- Title: General bounds on the quality of Bayesian coresets
- Authors: Trevor Campbell,
- Abstract summary: This work presents general upper and lower bounds on the Kullback-Leibler (KL)
Lower bounds are applied to obtain fundamental limitations on the quality of coreset approximations.
The upper bounds are used to analyze the performance of recent subsample-optimize methods.
- Score: 13.497835690074151
- License:
- Abstract: Bayesian coresets speed up posterior inference in the large-scale data regime by approximating the full-data log-likelihood function with a surrogate log-likelihood based on a small, weighted subset of the data. But while Bayesian coresets and methods for construction are applicable in a wide range of models, existing theoretical analysis of the posterior inferential error incurred by coreset approximations only apply in restrictive settings -- i.e., exponential family models, or models with strong log-concavity and smoothness assumptions. This work presents general upper and lower bounds on the Kullback-Leibler (KL) divergence of coreset approximations that reflect the full range of applicability of Bayesian coresets. The lower bounds require only mild model assumptions typical of Bayesian asymptotic analyses, while the upper bounds require the log-likelihood functions to satisfy a generalized subexponentiality criterion that is weaker than conditions used in earlier work. The lower bounds are applied to obtain fundamental limitations on the quality of coreset approximations, and to provide a theoretical explanation for the previously-observed poor empirical performance of importance sampling-based construction methods. The upper bounds are used to analyze the performance of recent subsample-optimize methods. The flexibility of the theory is demonstrated in validation experiments involving multimodal, unidentifiable, heavy-tailed Bayesian posterior distributions.
Related papers
- Fine-grained analysis of non-parametric estimation for pairwise learning [9.676007573960383]
We are concerned with the generalization performance of non-parametric estimation for pairwise learning.
Our results can be used to handle a wide range of pairwise learning problems including ranking, AUC, pairwise regression and metric and similarity learning.
arXiv Detail & Related papers (2023-05-31T08:13:14Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Score-based Generative Modeling Secretly Minimizes the Wasserstein
Distance [14.846377138993642]
We show that score-based models also minimize the Wasserstein distance between them under suitable assumptions on the model.
Our proof is based on a novel application of the theory of optimal transport, which can be of independent interest to the society.
arXiv Detail & Related papers (2022-12-13T03:48:01Z) - Large deviations rates for stochastic gradient descent with strongly
convex functions [11.247580943940916]
We provide a formal framework for the study of general high probability bounds with gradient descent.
We find an upper large deviations bound for SGD with strongly convex functions.
arXiv Detail & Related papers (2022-11-02T09:15:26Z) - Posterior Coreset Construction with Kernelized Stein Discrepancy for
Model-Based Reinforcement Learning [78.30395044401321]
We develop a novel model-based approach to reinforcement learning (MBRL)
It relaxes the assumptions on the target transition model to belong to a generic family of mixture models.
It can achieve up-to 50 percent reduction in wall clock time in some continuous control environments.
arXiv Detail & Related papers (2022-06-02T17:27:49Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Can convolutional ResNets approximately preserve input distances? A
frequency analysis perspective [31.897568775099558]
We show that the theoretical link between the regularisation scheme used and bi-Lipschitzness is only valid under conditions which do not hold in practice.
We present a simple constructive algorithm to search for counter examples to the distance preservation condition.
arXiv Detail & Related papers (2021-06-04T13:12:42Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Lower bounds in multiple testing: A framework based on derandomized
proxies [107.69746750639584]
This paper introduces an analysis strategy based on derandomization, illustrated by applications to various concrete models.
We provide numerical simulations of some of these lower bounds, and show a close relation to the actual performance of the Benjamini-Hochberg (BH) algorithm.
arXiv Detail & Related papers (2020-05-07T19:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.