SSAMBA: Self-Supervised Audio Representation Learning with Mamba State Space Model
- URL: http://arxiv.org/abs/2405.11831v1
- Date: Mon, 20 May 2024 06:58:47 GMT
- Title: SSAMBA: Self-Supervised Audio Representation Learning with Mamba State Space Model
- Authors: Siavash Shams, Sukru Samet Dindar, Xilin Jiang, Nima Mesgarani,
- Abstract summary: Self-Supervised Audio Mamba (SSAMBA) is the first self-supervised, attention-free, and SSM-based model for audio representation learning.
Our results demonstrate that SSAMBA outperforms the Self-Supervised Audio Spectrogram Transformer (SSAST) in most tasks.
- Score: 12.399378490833818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers have revolutionized deep learning across various tasks, including audio representation learning, due to their powerful modeling capabilities. However, they often suffer from quadratic complexity in both GPU memory usage and computational inference time, affecting their efficiency. Recently, state space models (SSMs) like Mamba have emerged as a promising alternative, offering a more efficient approach by avoiding these complexities. Given these advantages, we explore the potential of SSM-based models in audio tasks. In this paper, we introduce Self-Supervised Audio Mamba (SSAMBA), the first self-supervised, attention-free, and SSM-based model for audio representation learning. SSAMBA leverages the bidirectional Mamba to capture complex audio patterns effectively. We incorporate a self-supervised pretraining framework that optimizes both discriminative and generative objectives, enabling the model to learn robust audio representations from large-scale, unlabeled datasets. We evaluated SSAMBA on various tasks such as audio classification, keyword spotting, and speaker identification. Our results demonstrate that SSAMBA outperforms the Self-Supervised Audio Spectrogram Transformer (SSAST) in most tasks. Notably, SSAMBA is approximately 92.7% faster in batch inference speed and 95.4% more memory-efficient than SSAST for the tiny model size with an input token size of 22k. These efficiency gains, combined with superior performance, underscore the effectiveness of SSAMBA's architectural innovation, making it a compelling choice for a wide range of audio processing applications.
Related papers
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - Taipan: Efficient and Expressive State Space Language Models with Selective Attention [100.16383527459429]
Long-context language modeling is a significant challenge in Natural Language Processing (NLP)
Recent State Space Models (SSMs) such as Mamba offer alternatives with constant memory usage, but they underperform in tasks requiring extensive in-context retrieval.
We introduce Taipan, a novel hybrid architecture that combines Mamba-2 with Selective Attention Layers (SALs)
Our experiments demonstrate Taipan's superior performance across various scales and tasks, offering a promising solution for efficient long-context language modeling.
arXiv Detail & Related papers (2024-10-24T09:25:37Z) - Audio Mamba: Bidirectional State Space Model for Audio Representation Learning [15.472819870523093]
We introduce Audio Mamba, the first self-attention-free, purely SSM-based model for audio classification.
We evaluate AuM on various audio datasets - comprising six different benchmarks - where it achieves comparable or better performance.
arXiv Detail & Related papers (2024-06-05T15:00:59Z) - Audio Mamba: Selective State Spaces for Self-Supervised Audio Representations [16.269123889392343]
This work proposes Audio Mamba, a selective state space model for learning general-purpose audio representations.
Empirical results on ten diverse audio recognition downstream tasks show that the proposed models consistently outperform comparable self-supervised audio spectrogram transformer baselines.
arXiv Detail & Related papers (2024-06-04T10:19:14Z) - MambaVC: Learned Visual Compression with Selective State Spaces [74.29217829932895]
We introduce MambaVC, a simple, strong and efficient compression network based on SSM.
MambaVC develops a visual state space (VSS) block with a 2D selective scanning (2DSS) module as the nonlinear activation function after each downsampling.
On compression benchmark datasets, MambaVC achieves superior rate-distortion performance with lower computational and memory overheads.
arXiv Detail & Related papers (2024-05-24T10:24:30Z) - BlackMamba: Mixture of Experts for State-Space Models [10.209192169793772]
State-space models (SSMs) have recently demonstrated competitive performance to transformers at large-scale language modeling benchmarks.
MoE models have shown remarkable performance while significantly reducing the compute and latency costs of inference.
We present BlackMamba, a novel architecture that combines the Mamba SSM with MoE to obtain the benefits of both.
arXiv Detail & Related papers (2024-02-01T07:15:58Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
MambaByte is a token-free adaptation of the Mamba SSM trained autoregressively on byte sequences.
We show MambaByte to be competitive with, and even to outperform, state-of-the-art subword Transformers on language modeling tasks.
arXiv Detail & Related papers (2024-01-24T18:53:53Z) - EAT: Self-Supervised Pre-Training with Efficient Audio Transformer [2.443213094810588]
Efficient Audio Transformer (EAT) is inspired by the success of data2vec 2.0 in image modality and Audio-MAE in audio modality.
A novel Utterance-Frame Objective (UFO) is designed to enhance the modeling capability of acoustic events.
Experiment results demonstrate that EAT achieves state-of-the-art (SOTA) performance on a range of audio-related tasks.
arXiv Detail & Related papers (2024-01-07T14:31:27Z) - MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training [74.32603591331718]
We propose an acoustic Music undERstanding model with large-scale self-supervised Training (MERT), which incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training.
Experimental results indicate that our model can generalise and perform well on 14 music understanding tasks and attain state-of-the-art (SOTA) overall scores.
arXiv Detail & Related papers (2023-05-31T18:27:43Z) - A Light Weight Model for Active Speaker Detection [7.253335671577093]
We construct a lightweight active speaker detection architecture by reducing input candidates, splitting 2D and 3D convolutions for audio-visual feature extraction, and applying gated recurrent unit (GRU) with low computational complexity for cross-modal modeling.
Experimental results on the AVA-ActiveSpeaker dataset show that our framework achieves competitive mAP performance (94.1% vs. 94.2%).
Our framework also performs well on the Columbia dataset showing good robustness.
arXiv Detail & Related papers (2023-03-08T08:40:56Z) - Audio ALBERT: A Lite BERT for Self-supervised Learning of Audio
Representation [51.37980448183019]
We propose Audio ALBERT, a lite version of the self-supervised speech representation model.
We show that Audio ALBERT is capable of achieving competitive performance with those huge models in the downstream tasks.
In probing experiments, we find that the latent representations encode richer information of both phoneme and speaker than that of the last layer.
arXiv Detail & Related papers (2020-05-18T10:42:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.