NPLMV-PS: Neural Point-Light Multi-View Photometric Stereo
- URL: http://arxiv.org/abs/2405.12057v2
- Date: Mon, 22 Jul 2024 17:52:47 GMT
- Title: NPLMV-PS: Neural Point-Light Multi-View Photometric Stereo
- Authors: Fotios Logothetis, Ignas Budvytis, Roberto Cipolla,
- Abstract summary: We present a novel multi-view photometric stereo (MVPS) method.
Our work differs from the state-of-the-art multi-view PS-NeRF or Supernormal in that we explicitly leverage per-pixel intensity renderings.
Our method is among the first (along with Supernormal) to outperform the classical MVPS approach proposed by the DiLiGenT-MV benchmark.
- Score: 32.39157133181186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present a novel multi-view photometric stereo (MVPS) method. Like many works in 3D reconstruction we are leveraging neural shape representations and learnt renderers. However, our work differs from the state-of-the-art multi-view PS methods such as PS-NeRF or Supernormal in that we explicitly leverage per-pixel intensity renderings rather than relying mainly on estimated normals. We model point light attenuation and explicitly raytrace cast shadows in order to best approximate the incoming radiance for each point. The estimated incoming radiance is used as input to a fully neural material renderer that uses minimal prior assumptions and it is jointly optimised with the surface. Estimated normals and segmentation maps are also incorporated in order to maximise the surface accuracy. Our method is among the first (along with Supernormal) to outperform the classical MVPS approach proposed by the DiLiGenT-MV benchmark and achieves average 0.2mm Chamfer distance for objects imaged at approx 1.5m distance away with approximate 400x400 resolution. Moreover, our method shows high robustness to the sparse MVPS setup (6 views, 6 lights) greatly outperforming the SOTA competitor (0.38mm vs 0.61mm), illustrating the importance of neural rendering in multi-view photometric stereo.
Related papers
- RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction [3.1820300989695833]
This paper introduces a versatile paradigm for integrating multi-view reflectance and normal maps acquired through photometric stereo.
Our approach employs a pixel-wise joint re- parameterization of reflectance and normal, considering them as a vector of radiances rendered under simulated, varying illumination.
It significantly improves the detailed 3D reconstruction of areas with high curvature or low visibility.
arXiv Detail & Related papers (2023-12-02T19:49:27Z) - A Neural Height-Map Approach for the Binocular Photometric Stereo
Problem [36.404880059833324]
binocular photometric stereo (PS) framework has same acquisition speed as single view PS, however significantly improves the quality of the estimated geometry.
Our method achieves the state-of-the-art performance on the DiLiGenT-MV dataset adapted to binocular stereo setup as well as a new binocular photometric stereo dataset - LUCES-ST.
arXiv Detail & Related papers (2023-11-10T09:45:53Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues.
Deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces.
arXiv Detail & Related papers (2022-12-16T11:27:44Z) - Multi-View Photometric Stereo Revisited [100.97116470055273]
Multi-view photometric stereo (MVPS) is a preferred method for detailed and precise 3D acquisition of an object from images.
We present a simple, practical approach to MVPS, which works well for isotropic as well as other object material types such as anisotropic and glossy.
The proposed approach shows state-of-the-art results when tested extensively on several benchmark datasets.
arXiv Detail & Related papers (2022-10-14T09:46:15Z) - A CNN Based Approach for the Point-Light Photometric Stereo Problem [26.958763133729846]
We propose a CNN-based approach capable of handling realistic assumptions by leveraging recent improvements of deep neural networks for far-field Photometric Stereo.
Our approach outperforms the state-of-the-art on the DiLiGenT real world dataset.
In order to measure the performance of our approach for near-field point-light source PS data, we introduce LUCES the first real-world 'dataset for near-fieLd point light soUrCe photomEtric Stereo'
arXiv Detail & Related papers (2022-10-10T12:57:12Z) - PS-NeRF: Neural Inverse Rendering for Multi-view Photometric Stereo [22.42916940712357]
We present a neural inverse rendering method for MVPS based on implicit representation.
Our method achieves far more accurate shape reconstruction than existing MVPS and neural rendering methods.
arXiv Detail & Related papers (2022-07-23T03:55:18Z) - Facial Depth and Normal Estimation using Single Dual-Pixel Camera [81.02680586859105]
We introduce a DP-oriented Depth/Normal network that reconstructs the 3D facial geometry.
It contains the corresponding ground-truth 3D models including depth map and surface normal in metric scale.
It achieves state-of-the-art performances over recent DP-based depth/normal estimation methods.
arXiv Detail & Related papers (2021-11-25T05:59:27Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Portrait Neural Radiance Fields from a Single Image [68.66958204066721]
We present a method for estimating Neural Radiance Fields (NeRF) from a single portrait.
We propose to pretrain the weights of a multilayer perceptron (MLP), which implicitly models the volumetric density.
To improve the generalization to unseen faces, we train the canonical coordinate space approximated by 3D face morphable models.
We quantitatively evaluate the method using controlled captures and demonstrate the generalization to real portrait images, showing favorable results against state-of-the-arts.
arXiv Detail & Related papers (2020-12-10T18:59:59Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo technique.
Our algorithm is suitable for perspective cameras and nearby point light sources.
arXiv Detail & Related papers (2020-01-18T12:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.