Resolving Word Vagueness with Scenario-guided Adapter for Natural Language Inference
- URL: http://arxiv.org/abs/2405.12434v1
- Date: Tue, 21 May 2024 01:19:52 GMT
- Title: Resolving Word Vagueness with Scenario-guided Adapter for Natural Language Inference
- Authors: Yonghao Liu, Mengyu Li, Di Liang, Ximing Li, Fausto Giunchiglia, Lan Huang, Xiaoyue Feng, Renchu Guan,
- Abstract summary: Natural Language Inference (NLI) is a crucial task in natural language processing.
We propose an innovative ScenaFuse adapter that simultaneously integrates large-scale pre-trained linguistic knowledge and relevant visual information.
Our approach bridges the gap between language and vision, leading to improved understanding and inference capabilities in NLI tasks.
- Score: 24.58277380514406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural Language Inference (NLI) is a crucial task in natural language processing that involves determining the relationship between two sentences, typically referred to as the premise and the hypothesis. However, traditional NLI models solely rely on the semantic information inherent in independent sentences and lack relevant situational visual information, which can hinder a complete understanding of the intended meaning of the sentences due to the ambiguity and vagueness of language. To address this challenge, we propose an innovative ScenaFuse adapter that simultaneously integrates large-scale pre-trained linguistic knowledge and relevant visual information for NLI tasks. Specifically, we first design an image-sentence interaction module to incorporate visuals into the attention mechanism of the pre-trained model, allowing the two modalities to interact comprehensively. Furthermore, we introduce an image-sentence fusion module that can adaptively integrate visual information from images and semantic information from sentences. By incorporating relevant visual information and leveraging linguistic knowledge, our approach bridges the gap between language and vision, leading to improved understanding and inference capabilities in NLI tasks. Extensive benchmark experiments demonstrate that our proposed ScenaFuse, a scenario-guided approach, consistently boosts NLI performance.
Related papers
- Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects [11.117055725415446]
Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios.
The absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors.
We propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration.
arXiv Detail & Related papers (2023-12-08T09:02:45Z) - Improving Mandarin Prosodic Structure Prediction with Multi-level
Contextual Information [68.89000132126536]
This work proposes to use inter-utterance linguistic information to improve the performance of prosodic structure prediction (PSP)
Our method achieves better F1 scores in predicting prosodic word (PW), prosodic phrase (PPH) and intonational phrase (IPH)
arXiv Detail & Related papers (2023-08-31T09:19:15Z) - Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language
Pretraining? [34.609984453754656]
We aim to elucidate the impact of comprehensive linguistic knowledge, including semantic expression and syntactic structure, on multimodal alignment.
Specifically, we design and release the SNARE, the first large-scale multimodal alignment probing benchmark.
arXiv Detail & Related papers (2023-08-24T16:17:40Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
This work presents new methods to employ visual information as assistant signals to general NLP tasks.
For each sentence, we first retrieve a flexible number of images either from a light topic-image lookup table extracted over the existing sentence-image pairs.
Then, the text and images are encoded by a Transformer encoder and convolutional neural network, respectively.
arXiv Detail & Related papers (2023-01-09T13:54:11Z) - Position-Aware Contrastive Alignment for Referring Image Segmentation [65.16214741785633]
We present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features.
Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment.
arXiv Detail & Related papers (2022-12-27T09:13:19Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
We argue that the limited capacity of language models comes from 1) implicit language modeling; 2) unidirectional feature representation; and 3) language model with noise input.
We propose an autonomous, bidirectional and iterative ABINet++ for scene text spotting.
arXiv Detail & Related papers (2022-11-19T03:50:33Z) - Leveraging Visual Knowledge in Language Tasks: An Empirical Study on
Intermediate Pre-training for Cross-modal Knowledge Transfer [61.34424171458634]
We study whether integrating visual knowledge into a language model can fill the gap.
Our experiments show that visual knowledge transfer can improve performance in both low-resource and fully supervised settings.
arXiv Detail & Related papers (2022-03-14T22:02:40Z) - From Two to One: A New Scene Text Recognizer with Visual Language
Modeling Network [70.47504933083218]
We propose a Visual Language Modeling Network (VisionLAN), which views the visual and linguistic information as a union.
VisionLAN significantly improves the speed by 39% and adaptively considers the linguistic information to enhance the visual features for accurate recognition.
arXiv Detail & Related papers (2021-08-22T07:56:24Z) - Pre-training for Spoken Language Understanding with Joint Textual and
Phonetic Representation Learning [4.327558819000435]
We propose a novel joint textual-phonetic pre-training approach for learning spoken language representations.
Experimental results on spoken language understanding benchmarks, Fluent Speech Commands and SNIPS, show that the proposed approach significantly outperforms strong baseline models.
arXiv Detail & Related papers (2021-04-21T05:19:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.