Global-local Fourier Neural Operator for Accelerating Coronal Magnetic Field Model
- URL: http://arxiv.org/abs/2405.12754v3
- Date: Sun, 8 Sep 2024 15:28:18 GMT
- Title: Global-local Fourier Neural Operator for Accelerating Coronal Magnetic Field Model
- Authors: Yutao Du, Qin Li, Raghav Gnanasambandam, Mengnan Du, Haimin Wang, Bo Shen,
- Abstract summary: We propose a global-local Fourier Neural Operator (GL-FNO) that contains two branches of FNO.
The performance of the GLFNO is compared with state-of-the-art deep learning methods, including FNO, U-NO, U-FNO, Vision Transformer, CNN-RNN, and CNN-LSTM.
The results demonstrate that GL-FNO not only accelerates the MHD simulation (a few seconds for prediction, more than times 20,000 speed up) but also provides reliable prediction capabilities, thus greatly contributing to the understanding of space weather dynamics.
- Score: 17.256941005824576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploring the outer atmosphere of the sun has remained a significant bottleneck in astrophysics, given the intricate magnetic formations that significantly influence diverse solar events. Magnetohydrodynamics (MHD) simulations allow us to model the complex interactions between the sun's plasma, magnetic fields, and the surrounding environment. However, MHD simulation is extremely time-consuming, taking days or weeks for simulation. The goal of this study is to accelerate coronal magnetic field simulation using deep learning, specifically, the Fourier Neural Operator (FNO). FNO has been proven to be an ideal tool for scientific computing and discovery in the literature. In this paper, we proposed a global-local Fourier Neural Operator (GL-FNO) that contains two branches of FNOs: the global FNO branch takes downsampled input to reconstruct global features while the local FNO branch takes original resolution input to capture fine details. The performance of the GLFNO is compared with state-of-the-art deep learning methods, including FNO, U-NO, U-FNO, Vision Transformer, CNN-RNN, and CNN-LSTM, to demonstrate its accuracy, computational efficiency, and scalability. Furthermore, physics analysis from domain experts is also performed to demonstrate the reliability of GL-FNO. The results demonstrate that GL-FNO not only accelerates the MHD simulation (a few seconds for prediction, more than \times 20,000 speed up) but also provides reliable prediction capabilities, thus greatly contributing to the understanding of space weather dynamics. Our code implementation is available at https://github.com/Yutao-0718/GL-FNO
Related papers
- Efficient and generalizable nested Fourier-DeepONet for three-dimensional geological carbon sequestration [5.77922305904338]
Surrogate modeling with data-driven machine learning has become a promising alternative to accelerate physics-based simulations.
We have developed a nested Fourier-DeepONet by combining the expressiveness of the FNO with the modularity of a deep operator network (DeepONet)
This new framework is twice as efficient as a nested FNO for training and has at least 80% lower GPU memory requirement.
arXiv Detail & Related papers (2024-09-25T02:58:45Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone [0.7329200485567827]
We propose U-Shaped Adaptive Fourier Neural Operators (U-AFNO), a machine learning (ML) model inspired by recent advances in neural operator learning.
We use U-AFNOs to learn the dynamics mapping the field at a current time step into a later time step.
Our model reproduces the key micro-structure statistics and QoIs with a level of accuracy on-par with the high-fidelity numerical solver.
arXiv Detail & Related papers (2024-06-24T20:13:23Z) - Multiple-Input Fourier Neural Operator (MIFNO) for source-dependent 3D elastodynamics [0.0]
This work introduces the Multiple-Input Fourier Neural Operator (MIFNO) to deal with structured 3D fields representing material properties.
The MIFNO is applied to the problem of elastic wave propagation in the Earth's crust.
It is trained on the HEMEWS-3D database containing 30000 earthquake simulations in different heterogeneous domains.
arXiv Detail & Related papers (2024-04-15T20:07:44Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
We introduce Spherical FNOs (SFNOs) for learning operators on spherical geometries.
SFNOs have important implications for machine learning-based simulation of climate dynamics.
arXiv Detail & Related papers (2023-06-06T16:27:17Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
We apply a state-of-the-art operator learning technique to forecast the temporal evolution of experimentally measured velocity fields.
We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested.
arXiv Detail & Related papers (2023-01-19T20:04:36Z) - Factorized Fourier Neural Operators [77.47313102926017]
The Factorized Fourier Neural Operator (F-FNO) is a learning-based method for simulating partial differential equations.
We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver.
arXiv Detail & Related papers (2021-11-27T03:34:13Z) - U-FNO -- an enhanced Fourier neural operator based-deep learning model
for multiphase flow [43.572675744374415]
We present U-FNO, an enhanced Fourier neural operator for solving the multiphase flow problem.
We show that the U-FNO architecture has the advantages of both traditional CNN and original FNO, providing significantly more accurate and efficient performance.
The trained U-FNO provides gas saturation and pressure buildup predictions with a 10,000 times speedup compared to traditional numerical simulators.
arXiv Detail & Related papers (2021-09-03T17:52:25Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.