Mamo: a Mathematical Modeling Benchmark with Solvers
- URL: http://arxiv.org/abs/2405.13144v2
- Date: Sun, 30 Jun 2024 05:42:24 GMT
- Title: Mamo: a Mathematical Modeling Benchmark with Solvers
- Authors: Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, Benyou Wang,
- Abstract summary: We introduce a new benchmark, Mamo, that transcends traditional result-oriented assessments.
By focusing on the processes LLMs undertake rather than the correctness of their final solutions, Mamo pioneers a novel evaluation paradigm.
- Score: 14.04286044600141
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Mathematical modeling involves representing real-world phenomena, systems, or problems using mathematical expressions and equations to analyze, understand, and predict their behavior. Given that this process typically requires experienced experts, there is an interest in exploring whether Large Language Models (LLMs) can undertake mathematical modeling to potentially decrease human labor. To evaluate of LLMs in mathematical modeling, we introduce a new benchmark, Mamo, that transcends traditional result-oriented assessments. Unlike conventional methods that primarily assess LLMs based on the accuracy of solutions to mathematical problems, our approach offers deeper insight into the modeling process itself. By focusing on the processes LLMs undertake rather than the correctness of their final solutions, Mamo pioneers a novel evaluation paradigm. This shift underscores the importance of understanding the inherent modeling capabilities of LLMs, paving the way for a more nuanced and comprehensive analysis of their problem-solving strategies. Our work marks a significant advancement in the field, suggesting a new direction for future research by emphasizing the evaluation of LLMs' modeling processes over the mere correctness of answers. This benchmark not only facilitates a better understanding of LLMs' mathematical modeling capabilities but also sets a new standard for evaluating their performance in complex problem-solving scenarios.
Related papers
- Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models [86.45058529521258]
OlymMATH is a novel Olympiad-level mathematical benchmark designed to rigorously test the complex reasoning capabilities of LLMs.
OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions.
arXiv Detail & Related papers (2025-03-27T11:20:17Z) - Evaluating the Process Modeling Abilities of Large Language Models -- Preliminary Foundations and Results [1.3812010983144802]
Large language models (LLM) have revolutionized the processing of natural language.
It is currently under debate to what extent an LLM can generate good process models.
We discuss these challenges in detail and discuss future experiments to tackle these challenges scientifically.
arXiv Detail & Related papers (2025-03-14T18:52:18Z) - MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
We introduce MathFimer, a novel framework for mathematical reasoning step expansion.
We develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset.
We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains.
arXiv Detail & Related papers (2025-02-17T11:22:24Z) - Mathematical Reasoning in Large Language Models: Assessing Logical and Arithmetic Errors across Wide Numerical Ranges [0.0]
We introduce GSM-Ranges, a dataset generator that systematically perturbs numerical values in math problems to assess model robustness across varying numerical scales.
We also propose a novel grading methodology that distinguishes between logical and non-logical errors, offering a more precise evaluation of reasoning processes beyond computational accuracy.
arXiv Detail & Related papers (2025-02-12T09:53:10Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.
In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.
This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
Large Language Models (LLMs) based on the pre-trained fine-tuning paradigm have become pivotal in solving natural language processing tasks.
In this paper, we focus on autoregressive LLMs and propose to employ Hidden Markov Models (HMMs) to model them.
arXiv Detail & Related papers (2024-10-01T13:53:44Z) - Small Language Models are Equation Reasoners [2.424910201171407]
Chain-of-Thought (CoT) reasoning has enabled Large Language Model (LLM) to achieve remarkable performance in various NLP tasks, including arithmetic problem-solving.
However, this success does not generalize to small language model (sLM) like T5, due to their limited capacity and absence of emergent abilities associated with larger models.
Recent works to enhance sLM through knowledge distillation have yielded some improvements but still face significant limitations.
arXiv Detail & Related papers (2024-09-19T01:34:43Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
Large Language Models (LLMs) have been applied to Math Word Problems (MWPs)
We introduce a novel dataset MWP-MISTAKE, incorporating MWPs with both correct and incorrect reasoning steps generated through rule-based methods and smaller language models.
We highlight GPT-$o's superior performance in mistake detection and rectification and the persistent challenges faced by smaller models.
arXiv Detail & Related papers (2024-06-16T08:06:05Z) - Assessing the Emergent Symbolic Reasoning Abilities of Llama Large Language Models [47.129504708849446]
Large Language Models (LLMs) achieve impressive performance in a wide range of tasks.
LLMs show emergent abilities in mathematical reasoning benchmarks.
We evaluate three models of the Llama 2 family on different symbolic reasoning tasks.
arXiv Detail & Related papers (2024-06-05T12:22:43Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - AlphaMath Almost Zero: Process Supervision without Process [6.318873143509028]
We propose an innovative framework, AlphaMath, that bypasses the need for process annotations by leveraging Monte Carlo Tree Search (MCTS)
This framework focuses on unleashing the potential of a well-pretrained LLM to autonomously enhance its mathematical reasoning.
The experimental results on both in-domain and out-of-domain datasets demonstrate that even without GPT-4 or human-annotated process supervision, our AlphaMath framework achieves comparable or superior results to previous state-of-the-art methods.
arXiv Detail & Related papers (2024-05-06T15:20:30Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Knowledge Editing for Large Language Models: A Survey [51.01368551235289]
One major drawback of large language models (LLMs) is their substantial computational cost for pre-training.
Knowledge-based Model Editing (KME) has attracted increasing attention, which aims to precisely modify the LLMs to incorporate specific knowledge.
arXiv Detail & Related papers (2023-10-24T22:18:13Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
We introduce CheckMate, a prototype platform for humans to interact with and evaluate large language models (LLMs)
We conduct a study with CheckMate to evaluate three language models (InstructGPT, ChatGPT, and GPT-4) as assistants in proving undergraduate-level mathematics.
We derive a taxonomy of human behaviours and uncover that despite a generally positive correlation, there are notable instances of divergence between correctness and perceived helpfulness.
arXiv Detail & Related papers (2023-06-02T17:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.