Investigating Symbolic Capabilities of Large Language Models
- URL: http://arxiv.org/abs/2405.13209v1
- Date: Tue, 21 May 2024 21:24:34 GMT
- Title: Investigating Symbolic Capabilities of Large Language Models
- Authors: Neisarg Dave, Daniel Kifer, C. Lee Giles, Ankur Mali,
- Abstract summary: This study aims to bridge the gap by rigorously evaluating Large Language Models (LLMs) on a series of symbolic tasks.
Our analysis encompasses eight LLMs, including four enterprise-grade and four open-source models, of which three have been pre-trained on mathematical tasks.
The findings reveal a significant decline in LLMs' performance on context-free and context-sensitive symbolic tasks as the complexity, represented by the number of symbols, increases.
- Score: 16.88906206735967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompting techniques have significantly enhanced the capabilities of Large Language Models (LLMs) across various complex tasks, including reasoning, planning, and solving math word problems. However, most research has predominantly focused on language-based reasoning and word problems, often overlooking the potential of LLMs in handling symbol-based calculations and reasoning. This study aims to bridge this gap by rigorously evaluating LLMs on a series of symbolic tasks, such as addition, multiplication, modulus arithmetic, numerical precision, and symbolic counting. Our analysis encompasses eight LLMs, including four enterprise-grade and four open-source models, of which three have been pre-trained on mathematical tasks. The assessment framework is anchored in Chomsky's Hierarchy, providing a robust measure of the computational abilities of these models. The evaluation employs minimally explained prompts alongside the zero-shot Chain of Thoughts technique, allowing models to navigate the solution process autonomously. The findings reveal a significant decline in LLMs' performance on context-free and context-sensitive symbolic tasks as the complexity, represented by the number of symbols, increases. Notably, even the fine-tuned GPT3.5 exhibits only marginal improvements, mirroring the performance trends observed in other models. Across the board, all models demonstrated a limited generalization ability on these symbol-intensive tasks. This research underscores LLMs' challenges with increasing symbolic complexity and highlights the need for specialized training, memory and architectural adjustments to enhance their proficiency in symbol-based reasoning tasks.
Related papers
- Polymath: A Challenging Multi-modal Mathematical Reasoning Benchmark [53.61633384281524]
PolyMATH is a benchmark aimed at evaluating the general cognitive reasoning abilities of MLLMs.
The best scores achieved on PolyMATH are 41%, 36%, and 27%, obtained by Claude-3.5 Sonnet, GPT-4o and Gemini-1.5 Pro respectively.
A further fine-grained error analysis reveals that these models struggle to understand spatial relations and perform drawn-out, high-level reasoning.
arXiv Detail & Related papers (2024-10-06T20:35:41Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Can LLM Graph Reasoning Generalize beyond Pattern Memorization? [46.93972334344908]
We evaluate whether large language models (LLMs) can go beyond semantic, numeric, structural, reasoning patterns in the synthetic training data and improve utility on real-world graph-based tasks.
We find that while post-training alignment is most promising for real-world tasks, empowering LLM graph reasoning to go beyond pattern remains an open research question.
arXiv Detail & Related papers (2024-06-23T02:59:15Z) - Assessing the Emergent Symbolic Reasoning Abilities of Llama Large Language Models [47.129504708849446]
Large Language Models (LLMs) achieve impressive performance in a wide range of tasks.
LLMs show emergent abilities in mathematical reasoning benchmarks.
We evaluate three models of the Llama 2 family on different symbolic reasoning tasks.
arXiv Detail & Related papers (2024-06-05T12:22:43Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
This survey examines the capabilities of Large Language Models (LLMs) in puzzle solving.
Our findings highlight the disparity between LLM capabilities and human-like reasoning.
The survey underscores the necessity for novel strategies and richer datasets to advance LLMs' puzzle-solving proficiency.
arXiv Detail & Related papers (2024-02-17T14:19:38Z) - Evaluating LLMs' Mathematical Reasoning in Financial Document Question
Answering [53.56653281752486]
This study explores Large Language Models' mathematical reasoning on four financial question-answering datasets.
We focus on sensitivity to table complexity and performance variations with an increasing number of arithmetic reasoning steps.
We introduce a novel prompting technique tailored to semi-structured documents, matching or outperforming other baselines in performance.
arXiv Detail & Related papers (2024-02-17T05:10:18Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
We focus on two popular reasoning tasks: arithmetic reasoning and code generation.
We introduce (i) a general ontology of perturbations for math and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets.
We show a significant performance drop across all the models against perturbed questions.
arXiv Detail & Related papers (2024-01-17T18:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.