Analogical proportions II
- URL: http://arxiv.org/abs/2405.13461v1
- Date: Wed, 22 May 2024 09:02:12 GMT
- Title: Analogical proportions II
- Authors: Christian Antić,
- Abstract summary: Analogical reasoning is the ability to detect parallels between two seemingly distant objects or situations.
Analogical proportions are expressions of the form $a$ is to $b$ what $c$ is to $d$'' at the core of analogical reasoning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analogical reasoning is the ability to detect parallels between two seemingly distant objects or situations, a fundamental human capacity used for example in commonsense reasoning, learning, and creativity which is believed by many researchers to be at the core of human and artificial general intelligence. Analogical proportions are expressions of the form ``$a$ is to $b$ what $c$ is to $d$'' at the core of analogical reasoning. The author has recently introduced an abstract algebraic framework of analogical proportions within the general setting of universal algebra. It is the purpose of this paper to further develop the mathematical theory of analogical proportions within that framework as motivated by the fact that it has already been successfully applied to logic program synthesis in artificial intelligence.
Related papers
- A Complexity-Based Theory of Compositionality [53.025566128892066]
In AI, compositional representations can enable a powerful form of out-of-distribution generalization.
Here, we propose a formal definition of compositionality that accounts for and extends our intuitions about compositionality.
The definition is conceptually simple, quantitative, grounded in algorithmic information theory, and applicable to any representation.
arXiv Detail & Related papers (2024-10-18T18:37:27Z) - Algebraic anti-unification [0.0]
Abstraction is key to human and artificial intelligence as it allows one to see common structure in otherwise distinct objects or situations.
Anti-unification (or generalization) is textitthe part of theoretical computer science and AI studying abstraction.
arXiv Detail & Related papers (2024-07-22T09:49:46Z) - ANALOGYKB: Unlocking Analogical Reasoning of Language Models with A Million-scale Knowledge Base [51.777618249271725]
ANALOGYKB is a million-scale analogy knowledge base derived from existing knowledge graphs (KGs)
It identifies two types of analogies from the KGs: 1) analogies of the same relations, which can be directly extracted from the KGs, and 2) analogies of analogous relations, which are identified with a selection and filtering pipeline enabled by large language models (LLMs)
arXiv Detail & Related papers (2023-05-10T09:03:01Z) - Bilingual analogical proportions via hedges [0.0]
Analogical proportions are expressions of the form $a$ is to $b$ what $c$ is to $d$'' at the core of analogical reasoning.
The purpose of this paper is to generalize his unilingual framework to a bilingual one where the underlying languages may differ.
arXiv Detail & Related papers (2023-05-02T08:27:36Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
We propose a benchmark to investigate models' logical reasoning capabilities in complex real-life scenarios.
Based on the multi-hop chain of reasoning, the explanation form includes three main components.
We evaluate the current best models' performance on this new explanation form.
arXiv Detail & Related papers (2022-10-22T16:01:13Z) - Understanding Narratives through Dimensions of Analogy [17.68704739786042]
Analogical reasoning is a powerful tool that enables humans to connect two situations, and to generalize their knowledge from familiar to novel situations.
Modern scalable AI techniques with the potential to reason by analogy have been only applied to the special case of proportional analogy.
In this paper, we aim to bridge the gap by: 1) formalizing six dimensions of analogy based on mature insights from Cognitive Science research, 2) annotating a corpus of fables with each of these dimensions, and 3) defining four tasks with increasing complexity that enable scalable evaluation of AI techniques.
arXiv Detail & Related papers (2022-06-14T20:56:26Z) - On syntactically similar logic programs and sequential decompositions [0.0]
Rule-based reasoning is an essential part of human intelligence prominently formalized in artificial intelligence research via logic programs.
Describing complex objects as the composition of elementary ones is a common strategy in computer science and science in general.
We show how similarity can be used to answer queries across different domains via a one-step reduction.
arXiv Detail & Related papers (2021-09-11T15:22:17Z) - From LSAT: The Progress and Challenges of Complex Reasoning [56.07448735248901]
We study the three challenging and domain-general tasks of the Law School Admission Test (LSAT), including analytical reasoning, logical reasoning and reading comprehension.
We propose a hybrid reasoning system to integrate these three tasks and achieve impressive overall performance on the LSAT tests.
arXiv Detail & Related papers (2021-08-02T05:43:03Z) - Logical Neural Networks [51.46602187496816]
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning)
Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation.
Inference is omni rather than focused on predefined target variables, and corresponds to logical reasoning.
arXiv Detail & Related papers (2020-06-23T16:55:45Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Analogical Proportions [0.0]
This paper introduces an abstract framework of analogical proportions of the form $a$ is to $b$ what $c$ is to $d$' in the general setting of universal algebra.
It turns out that our notion of analogical proportions has appealing mathematical properties.
This paper is a first step towards a theory of analogical reasoning and learning systems with potential applications to fundamental AI-problems.
arXiv Detail & Related papers (2020-06-04T13:44:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.