What Makes Good Few-shot Examples for Vision-Language Models?
- URL: http://arxiv.org/abs/2405.13532v1
- Date: Wed, 22 May 2024 11:03:33 GMT
- Title: What Makes Good Few-shot Examples for Vision-Language Models?
- Authors: Zhaojun Guo, Jinghui Lu, Xuejing Liu, Rui Zhao, ZhenXing Qian, Fei Tan,
- Abstract summary: We introduce two innovative selection methods - Representativeness (REPRE) and Gaussian Monte Carlo (Montecarlo)
Our findings demonstrate that both REPRE and Montecarlo significantly surpass both random selection and AL-based strategies in few-shot training scenarios.
The research also underscores that these instance selection methods are model-agnostic, offering a versatile enhancement to a wide array of few-shot training methodologies.
- Score: 29.620987070958318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the notable advancements achieved by leveraging pre-trained vision-language (VL) models through few-shot tuning for downstream tasks, our detailed empirical study highlights a significant dependence of few-shot learning outcomes on the careful selection of training examples - a facet that has been previously overlooked in research. In this study, we delve into devising more effective strategies for the meticulous selection of few-shot training examples, as opposed to relying on random sampling, to enhance the potential of existing few-shot prompt learning methodologies. To achieve this, we assess the effectiveness of various Active Learning (AL) techniques for instance selection, such as Entropy and Margin of Confidence, within the context of few-shot training. Furthermore, we introduce two innovative selection methods - Representativeness (REPRE) and Gaussian Monte Carlo (Montecarlo) - designed to proactively pinpoint informative examples for labeling in relation to pre-trained VL models. Our findings demonstrate that both REPRE and Montecarlo significantly surpass both random selection and AL-based strategies in few-shot training scenarios. The research also underscores that these instance selection methods are model-agnostic, offering a versatile enhancement to a wide array of few-shot training methodologies.
Related papers
- Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - Automatic Combination of Sample Selection Strategies for Few-Shot
Learning [8.741702582225987]
In few-shot learning, the limited number of samples used to train a model have a significant impact on the overall success.
We investigate the impact of 20 sample selection strategies on the performance of 5 few-shot learning approaches over 8 image and 6 text datasets.
arXiv Detail & Related papers (2024-02-05T14:23:43Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
We propose Retrieval for In-Context Learning (RetICL), a learnable method for modeling and optimally selecting examples sequentially for in-context learning.
We evaluate RetICL on math word problem solving and scientific question answering tasks and show that it consistently outperforms or matches and learnable baselines.
arXiv Detail & Related papers (2023-05-23T20:15:56Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Learning New Tasks from a Few Examples with Soft-Label Prototypes [18.363177410917597]
We propose a novel few-shot learning approach based on soft-label prototypes (SLPs)
We focus on learning previously unseen NLP tasks from very few examples (4, 8, 16) per class.
We experimentally demonstrate that our approach achieves superior performance on the majority of tested tasks in this data-lean setting.
arXiv Detail & Related papers (2022-10-31T16:06:48Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEE is a model-ensemble method that consists of optimistic exploration and weighted exploitation.
Our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
arXiv Detail & Related papers (2021-07-05T07:18:20Z) - True Few-Shot Learning with Language Models [78.42578316883271]
We evaluate the few-shot ability of LMs when held-out examples are unavailable.
Our findings suggest that prior work significantly overestimated the true few-shot ability of LMs.
arXiv Detail & Related papers (2021-05-24T17:55:51Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - Exploiting the Matching Information in the Support Set for Few Shot
Event Classification [66.31312496170139]
We investigate event classification under the few-shot learningsetting.
We propose a novel training method for this problem that exten-sively exploit the support set during the training process.
Our experiments ontwo benchmark EC datasets show that the proposed method can improvethe best reported few-shot learning models by up to 10% on accuracy for event classification.
arXiv Detail & Related papers (2020-02-13T00:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.