Incomplete Multimodal Industrial Anomaly Detection via Cross-Modal Distillation
- URL: http://arxiv.org/abs/2405.13571v3
- Date: Mon, 23 Sep 2024 13:50:01 GMT
- Title: Incomplete Multimodal Industrial Anomaly Detection via Cross-Modal Distillation
- Authors: Wenbo Sui, Daniel Lichau, Josselin Lefèvre, Harold Phelippeau,
- Abstract summary: multimodal industrial anomaly detection (IAD) based on 3D point clouds and RGB images remains a work in progress.
Existing quality control processes combine rapid in-line inspections, such as optical and infrared imaging with high-resolution but time-consuming near-line characterization techniques.
We propose CMDIAD, a Cross-Modal Distillation framework for IAD to demonstrate the feasibility of a Multi-modal Training, Few-modal Inference pipeline.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent studies of multimodal industrial anomaly detection (IAD) based on 3D point clouds and RGB images have highlighted the importance of exploiting the redundancy and complementarity among modalities for accurate classification and segmentation. However, achieving multimodal IAD in practical production lines remains a work in progress. It is essential to consider the trade-offs between the costs and benefits associated with the introduction of new modalities while ensuring compatibility with current processes. Existing quality control processes combine rapid in-line inspections, such as optical and infrared imaging with high-resolution but time-consuming near-line characterization techniques, including industrial CT and electron microscopy to manually or semi-automatically locate and analyze defects in the production of Li-ion batteries and composite materials. Given the cost and time limitations, only a subset of the samples can be inspected by all in-line and near-line methods, and the remaining samples are only evaluated through one or two forms of in-line inspection. To fully exploit data for deep learning-driven automatic defect detection, the models must have the ability to leverage multimodal training and handle incomplete modalities during inference. In this paper, we propose CMDIAD, a Cross-Modal Distillation framework for IAD to demonstrate the feasibility of a Multi-modal Training, Few-modal Inference (MTFI) pipeline. Our findings show that the MTFI pipeline can more effectively utilize incomplete multimodal information compared to applying only a single modality for training and inference. Moreover, we investigate the reasons behind the asymmetric performance improvement using point clouds or RGB images as the main modality of inference. This provides a foundation for our future multimodal dataset construction with additional modalities from manufacturing scenarios.
Related papers
- Analytic Continual Test-Time Adaptation for Multi-Modality Corruption [23.545997349882857]
Test-Time Adaptation (TTA) aims to help pre-trained models bridge the gap between source and target datasets.
We propose a novel approach, Multi-modality Dynamic Analytic Adapter (MDAA) for MM-CTTA tasks.
MDAA achieves state-of-the-art performance on MM-CTTA while ensuring reliable model adaptation.
arXiv Detail & Related papers (2024-10-29T01:21:24Z) - RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection [61.71770293720491]
We propose a novel two-stage Robust modAlity-imcomplete fusing and Detecting frAmewoRk, abbreviated as RADAR.
Our bootstrapping philosophy is to enhance two stages in MIIAD, improving the robustness of the Multimodal Transformer.
Our experimental results demonstrate that the proposed RADAR significantly surpasses conventional MIAD methods in terms of effectiveness and robustness.
arXiv Detail & Related papers (2024-10-02T16:47:55Z) - DefectTwin: When LLM Meets Digital Twin for Railway Defect Inspection [5.601042583221173]
A Digital Twin (DT) replicates objects, processes, or systems for real-time monitoring, simulation, and predictive maintenance.
Recent advancements like Large Language Models (LLMs) have revolutionized traditional AI systems and offer immense potential when combined with DT in industrial applications such as railway defect inspection.
We introduce DefectTwin, which employs a multimodal and multi-model (M2) LLM-based AI pipeline to analyze both seen and unseen visual defects in railways.
arXiv Detail & Related papers (2024-08-26T22:32:31Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - AMFD: Distillation via Adaptive Multimodal Fusion for Multispectral Pedestrian Detection [23.91870504363899]
Double-stream networks in multispectral detection employ two separate feature extraction branches for multi-modal data.
This has hindered the widespread employment of multispectral pedestrian detection in embedded devices for autonomous systems.
We introduce the Adaptive Modal Fusion Distillation (AMFD) framework, which can fully utilize the original modal features of the teacher network.
arXiv Detail & Related papers (2024-05-21T17:17:17Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity [9.811378971225727]
This paper extends the current research into missing modalities to the low-data regime.
It is often expensive to get full-modality data and sufficient annotated training samples.
We propose to use retrieval-augmented in-context learning to address these two crucial issues.
arXiv Detail & Related papers (2024-03-14T14:19:48Z) - Exploring Missing Modality in Multimodal Egocentric Datasets [89.76463983679058]
We introduce a novel concept -Missing Modality Token (MMT)-to maintain performance even when modalities are absent.
Our method mitigates the performance loss, reducing it from its original $sim 30%$ drop to only $sim 10%$ when half of the test set is modal-incomplete.
arXiv Detail & Related papers (2024-01-21T11:55:42Z) - Multimodal Industrial Anomaly Detection via Hybrid Fusion [59.16333340582885]
We propose a novel multimodal anomaly detection method with hybrid fusion scheme.
Our model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTecD-3 AD dataset.
arXiv Detail & Related papers (2023-03-01T15:48:27Z) - Sparse Fusion for Multimodal Transformers [7.98117428941095]
We present Sparse Fusion Transformers (SFT), a novel multimodal fusion method for transformers.
Key to our idea is a sparse-pooling block that reduces unimodal token sets prior to cross-modality modeling.
State-of-the-art performance is obtained on multiple benchmarks under similar experiment conditions, while reporting up to six-fold reduction in computational cost and memory requirements.
arXiv Detail & Related papers (2021-11-23T16:43:49Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.