Do Language Models Enjoy Their Own Stories? Prompting Large Language Models for Automatic Story Evaluation
- URL: http://arxiv.org/abs/2405.13769v1
- Date: Wed, 22 May 2024 15:56:52 GMT
- Title: Do Language Models Enjoy Their Own Stories? Prompting Large Language Models for Automatic Story Evaluation
- Authors: Cyril Chhun, Fabian M. Suchanek, ChloƩ Clavel,
- Abstract summary: Large Language Models (LLM) achieve state-of-the-art performance on many NLP tasks.
We study whether LLMs can be used as substitutes for human annotators.
We find that LLMs outperform current automatic measures for system-level evaluation but still struggle to provide satisfactory explanations.
- Score: 15.718288693929019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Storytelling is an integral part of human experience and plays a crucial role in social interactions. Thus, Automatic Story Evaluation (ASE) and Generation (ASG) could benefit society in multiple ways, but they are challenging tasks which require high-level human abilities such as creativity, reasoning and deep understanding. Meanwhile, Large Language Models (LLM) now achieve state-of-the-art performance on many NLP tasks. In this paper, we study whether LLMs can be used as substitutes for human annotators for ASE. We perform an extensive analysis of the correlations between LLM ratings, other automatic measures, and human annotations, and we explore the influence of prompting on the results and the explainability of LLM behaviour. Most notably, we find that LLMs outperform current automatic measures for system-level evaluation but still struggle at providing satisfactory explanations for their answers.
Related papers
- LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
Large Language Models (LLMs) are increasingly used in everyday life and research.
measuring the personality of a given LLM is currently a challenge.
This paper introduces the Language Model Linguistic Personality Assessment (LMLPA), a system designed to evaluate the linguistic personalities of LLMs.
arXiv Detail & Related papers (2024-10-23T07:48:51Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Let the LLMs Talk: Simulating Human-to-Human Conversational QA via
Zero-Shot LLM-to-LLM Interactions [19.365615476223635]
Conversational question-answering systems aim to create interactive search systems that retrieve information by interacting with users.
Existing work uses human annotators to play the roles of the questioner (student) and the answerer (teacher)
We propose a simulation framework that employs zero-shot learner LLMs for simulating teacher-student interactions.
arXiv Detail & Related papers (2023-12-05T17:38:02Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - DialogueLLM: Context and Emotion Knowledge-Tuned Large Language Models
for Emotion Recognition in Conversations [28.15933355881604]
Large language models (LLMs) have shown extraordinary efficacy across numerous downstream natural language processing (NLP) tasks.
We propose DialogueLLM, a context and emotion knowledge tuned LLM that is obtained by fine-tuning LLaMA models.
We offer a comprehensive evaluation of our proposed model on three benchmarking emotion recognition in conversations datasets.
arXiv Detail & Related papers (2023-10-17T16:15:34Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large
Language Models with SocKET Benchmark [14.922083834969323]
Large language models (LLMs) have been shown to perform well at a variety of syntactic, discourse, and reasoning tasks.
We introduce a new theory-driven benchmark, SocKET, that contains 58 NLP tasks testing social knowledge.
arXiv Detail & Related papers (2023-05-24T09:21:06Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
Large language models (LLMs) have demonstrated exceptional performance on unseen tasks when only the task instructions are provided.
We show that the result of LLM evaluation is consistent with the results obtained by expert human evaluation.
arXiv Detail & Related papers (2023-05-03T07:28:50Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood.
We find instruction tuning, and not model size, is the key to the LLM's zero-shot summarization capability.
arXiv Detail & Related papers (2023-01-31T18:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.