Analysis of ion chain sympathetic cooling and gate dynamics
- URL: http://arxiv.org/abs/2405.13851v2
- Date: Thu, 5 Sep 2024 19:03:23 GMT
- Title: Analysis of ion chain sympathetic cooling and gate dynamics
- Authors: Aditya Paul, Crystal Noel,
- Abstract summary: We analyze best practices for sympathetic cooling of long chains of trapped ions using analytical and computational methods.
We show that optimal cooling performance is achieved when coolants are placed at the center of the chain.
We also show that cooling as often as possible when running a circuit is optimal when the qubit coherence time is otherwise long.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sympathetic cooling is a technique often employed to mitigate motional heating in trapped-ion quantum computers. However, choosing system parameters such as number of coolants and cooling duty cycle for optimal gate performance requires evaluating trade-offs between motional errors and other slower errors such as qubit dephasing. The optimal parameters depend on cooling power, heating rate, and ion spacing in a particular system. In this study, we aim to analyze best practices for sympathetic cooling of long chains of trapped ions using analytical and computational methods. We use a case study to show that optimal cooling performance is achieved when coolants are placed at the center of the chain and provide a perturbative upper-bound on the cooling limit of a mode given a particular set of cooling parameters. In addition, using computational tools, we analyze the trade-off between the number of coolant ions in a chain and the center-of-mass mode heating rate. We also show that cooling as often as possible when running a circuit is optimal when the qubit coherence time is otherwise long. These results provide a roadmap for how to choose sympathetic cooling parameters to maximize circuit performance in trapped ion quantum computers using long chains of ions.
Related papers
- Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields [41.94295877935867]
We study the emergence of prethermal Floquet Time Crystal (pFTC) in disordered multiferroic chains.
We derive the phase diagram of the model, characterizing the magnetization, entanglement, and coherence dynamics of the system.
We also explore the application of the pFTC as quantum sensors of AC fields.
arXiv Detail & Related papers (2024-10-23T03:15:57Z) - Cyclic Superconducting Quantum Refrigerators Using Guided Fluxon
Propagation [0.0]
We propose cyclic quantum refrigeration in solid-state, employing a gas of magnetic field vortices in a type-II superconductor as the cooling agent.
Our cooling principle can offer significant cooling for on-chip micro-refrigeration purposes, by locally cooling below the base temperatures achievable in a conventional dilution refrigerator.
arXiv Detail & Related papers (2022-12-01T04:52:30Z) - Chiral-coupling-assisted refrigeration in trapped ions [5.273668342847468]
We show the capability of light-mediated chiral couplings between ions, which enables a superior cooling scheme.
Our results help surpass the bottleneck of cooling procedure in applications of trapped-ion-based quantum computer and simulator.
arXiv Detail & Related papers (2022-03-02T05:18:11Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - A scalable helium gas cooling system for trapped-ion applications [51.715517570634994]
A modular cooling system is presented for use with multiple ion-trapping experiments simultaneously.
The cooling system is expected to deliver a net cooling power of 111 W at 70 K to up to four experiments.
arXiv Detail & Related papers (2021-06-14T16:37:54Z) - Fast Laser Cooling Using Optimal Quantum Control [11.815965846475027]
State of the art cooling schemes often work under a set of optimal cooling conditions derived analytically.
We show that faster cooling can be achieved while at the same time a low average phonon occupation can be retained.
arXiv Detail & Related papers (2021-06-10T01:01:18Z) - Tank-Circuit Assisted Coupling Method for Sympathetic Laser Cooling [44.62475518267084]
We discuss the coupling of the motion of two ion species in separate Penning traps via a common tank circuit.
We propose an intermittent laser cooling method for sympathetic cooling and provide a theoretical description.
arXiv Detail & Related papers (2021-04-08T12:11:34Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Efficient sideband cooling protocol for long trapped-ion chains [0.0]
Trapped ions are a promising candidate for large scale quantum computation.
We present a technique whereby individual ions are used to cool individual motional modes in parallel.
arXiv Detail & Related papers (2020-02-10T23:32:41Z) - Ground-state cooling enabled by critical coupling and dark entangled
states [0.0]
We find optimal cooling occurs when the phonon mode is critically coupled to the two-level system ensemble.
Our results provide a new avenue for ground-state cooling and should be accessible for experimental demonstrations.
arXiv Detail & Related papers (2020-01-05T21:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.