ST-Gait++: Leveraging spatio-temporal convolutions for gait-based emotion recognition on videos
- URL: http://arxiv.org/abs/2405.13903v1
- Date: Wed, 22 May 2024 18:24:21 GMT
- Title: ST-Gait++: Leveraging spatio-temporal convolutions for gait-based emotion recognition on videos
- Authors: Maria LuĂsa Lima, Willams de Lima Costa, Estefania Talavera Martinez, Veronica Teichrieb,
- Abstract summary: We propose a framework for emotion recognition through the analysis of gait.
Our model is composed of a sequence of spatial-temporal Graph Convolutional Networks.
We evaluate our proposed framework on the E-Gait dataset, composed of a total of 2177 samples.
- Score: 3.1489012476109854
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Emotion recognition is relevant for human behaviour understanding, where facial expression and speech recognition have been widely explored by the computer vision community. Literature in the field of behavioural psychology indicates that gait, described as the way a person walks, is an additional indicator of emotions. In this work, we propose a deep framework for emotion recognition through the analysis of gait. More specifically, our model is composed of a sequence of spatial-temporal Graph Convolutional Networks that produce a robust skeleton-based representation for the task of emotion classification. We evaluate our proposed framework on the E-Gait dataset, composed of a total of 2177 samples. The results obtained represent an improvement of approximately 5% in accuracy compared to the state of the art. In addition, during training we observed a faster convergence of our model compared to the state-of-the-art methodologies.
Related papers
- How Do You Perceive My Face? Recognizing Facial Expressions in Multi-Modal Context by Modeling Mental Representations [5.895694050664867]
We introduce a novel approach for facial expression classification that goes beyond simple classification tasks.
Our model accurately classifies a perceived face and synthesizes the corresponding mental representation perceived by a human when observing a face in context.
We evaluate synthesized expressions in a human study, showing that our model effectively produces approximations of human mental representations.
arXiv Detail & Related papers (2024-09-04T09:32:40Z) - An Explainable Fast Deep Neural Network for Emotion Recognition [1.3108652488669732]
This study explores explainability techniques for binary deep neural architectures in the framework of emotion classification through video analysis.
We employ an innovative explainable artificial intelligence algorithm to understand the crucial facial landmarks movements during emotional feeling.
arXiv Detail & Related papers (2024-07-20T12:59:08Z) - Iconic Gesture Semantics [87.00251241246136]
Informational evaluation is spelled out as extended exemplification (extemplification) in terms of perceptual classification of a gesture's visual iconic model.
We argue that the perceptual classification of instances of visual communication requires a notion of meaning different from Frege/Montague frameworks.
An iconic gesture semantics is introduced which covers the full range from gesture representations over model-theoretic evaluation to inferential interpretation in dynamic semantic frameworks.
arXiv Detail & Related papers (2024-04-29T13:58:03Z) - Emotion Recognition from the perspective of Activity Recognition [0.0]
Appraising human emotional states, behaviors, and reactions displayed in real-world settings can be accomplished using latent continuous dimensions.
For emotion recognition systems to be deployed and integrated into real-world mobile and computing devices, we need to consider data collected in the world.
We propose a novel three-stream end-to-end deep learning regression pipeline with an attention mechanism.
arXiv Detail & Related papers (2024-03-24T18:53:57Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Affect-DML: Context-Aware One-Shot Recognition of Human Affect using
Deep Metric Learning [29.262204241732565]
Existing methods assume that all emotions-of-interest are given a priori as annotated training examples.
We conceptualize one-shot recognition of emotions in context -- a new problem aimed at recognizing human affect states in finer particle level from a single support sample.
All variants of our model clearly outperform the random baseline, while leveraging the semantic scene context consistently improves the learnt representations.
arXiv Detail & Related papers (2021-11-30T10:35:20Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Leveraging Recent Advances in Deep Learning for Audio-Visual Emotion
Recognition [2.1485350418225244]
Spontaneous multi-modal emotion recognition has been extensively studied for human behavior analysis.
We propose a new deep learning-based approach for audio-visual emotion recognition.
arXiv Detail & Related papers (2021-03-16T15:49:15Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
We propose a technique based on Functional ANOVA to extract significant patterns of face muscles movements.
We determine if there are time-related differences on expressions among emotional groups by using a functional F-test.
arXiv Detail & Related papers (2021-03-01T08:31:08Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
Deep generative models have achieved impressive results in the field of automated facial expression editing.
We propose a model that can be used to manipulate facial expressions in facial images according to continuous two-dimensional emotion labels.
arXiv Detail & Related papers (2020-06-22T13:03:02Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.