Rank Reduction Autoencoders -- Enhancing interpolation on nonlinear manifolds
- URL: http://arxiv.org/abs/2405.13980v1
- Date: Wed, 22 May 2024 20:33:09 GMT
- Title: Rank Reduction Autoencoders -- Enhancing interpolation on nonlinear manifolds
- Authors: Jad Mounayer, Sebastian Rodriguez, Chady Ghnatios, Charbel Farhat, Francisco Chinesta,
- Abstract summary: Rank Reduction Autoencoder (RRAE) is an autoencoder with an enlarged latent space.
Two formulations are presented, a strong and a weak one, that build a reduced basis accurately representing the latent space.
We show the efficiency of our formulations by using them for tasks and comparing the results to other autoencoders.
- Score: 3.180674374101366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The efficiency of classical Autoencoders (AEs) is limited in many practical situations. When the latent space is reduced through autoencoders, feature extraction becomes possible. However, overfitting is a common issue, leading to ``holes'' in AEs' interpolation capabilities. On the other hand, increasing the latent dimension results in a better approximation with fewer non-linearly coupled features (e.g., Koopman theory or kPCA), but it doesn't necessarily lead to dimensionality reduction, which makes feature extraction problematic. As a result, interpolating using Autoencoders gets harder. In this work, we introduce the Rank Reduction Autoencoder (RRAE), an autoencoder with an enlarged latent space, which is constrained to have a small pre-specified number of dominant singular values (i.e., low-rank). The latent space of RRAEs is large enough to enable accurate predictions while enabling feature extraction. As a result, the proposed autoencoder features a minimal rank linear latent space. To achieve what's proposed, two formulations are presented, a strong and a weak one, that build a reduced basis accurately representing the latent space. The first formulation consists of a truncated SVD in the latent space, while the second one adds a penalty term to the loss function. We show the efficiency of our formulations by using them for interpolation tasks and comparing the results to other autoencoders on both synthetic data and MNIST.
Related papers
- Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
We prove that gradient descent converges to a solution that completely disregards the sparse structure of the input.
We show how to improve upon Gaussian performance for the compression of sparse data by adding a denoising function to a shallow architecture.
We validate our findings on image datasets, such as CIFAR-10 and MNIST.
arXiv Detail & Related papers (2024-02-07T16:32:29Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Fundamental Limits of Two-layer Autoencoders, and Achieving Them with
Gradient Methods [91.54785981649228]
This paper focuses on non-linear two-layer autoencoders trained in the challenging proportional regime.
Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods.
For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders.
arXiv Detail & Related papers (2022-12-27T12:37:34Z) - Dimensionality reduction with variational encoders based on subsystem
purification [0.27998963147546135]
We propose an alternative approach to variational autoencoders to reduce the dimensionality of states represented in higher dimensional Hilbert spaces.
We make use of Bars and Stripes dataset (BAS) for an 8x8 grid to create efficient encoding states and report a classification accuracy of 95%.
arXiv Detail & Related papers (2022-09-20T15:24:11Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - Highly Parallel Autoregressive Entity Linking with Discriminative
Correction [51.947280241185]
We propose a very efficient approach that parallelizes autoregressive linking across all potential mentions.
Our model is >70 times faster and more accurate than the previous generative method.
arXiv Detail & Related papers (2021-09-08T17:28:26Z) - A New Modal Autoencoder for Functionally Independent Feature Extraction [6.690183908967779]
A new modal autoencoder (MAE) is proposed by othogonalising the columns of the readout weight matrix.
The results were validated on the MNIST variations and USPS classification benchmark suite.
The new MAE introduces a very simple training principle for autoencoders and could be promising for the pre-training of deep neural networks.
arXiv Detail & Related papers (2020-06-25T13:25:10Z) - Isometric Autoencoders [36.947436313489746]
We advocate an isometry (i.e., local distance preserving) regularizer.
Our regularizer encourages: (i.e., the decoder to be an isometry; and (ii) the encoder to be the decoder's pseudo-inverse, that is, the encoder extends the inverse of the decoder to the ambient space by projection.
arXiv Detail & Related papers (2020-06-16T16:31:57Z) - Learning Autoencoders with Relational Regularization [89.53065887608088]
A new framework is proposed for learning autoencoders of data distributions.
We minimize the discrepancy between the model and target distributions, with a emphrelational regularization
We implement the framework with two scalable algorithms, making it applicable for both probabilistic and deterministic autoencoders.
arXiv Detail & Related papers (2020-02-07T17:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.