TS40K: a 3D Point Cloud Dataset of Rural Terrain and Electrical Transmission System
- URL: http://arxiv.org/abs/2405.13989v1
- Date: Wed, 22 May 2024 20:53:23 GMT
- Title: TS40K: a 3D Point Cloud Dataset of Rural Terrain and Electrical Transmission System
- Authors: Diogo Lavado, Cláudia Soares, Alessandra Micheletti, Ricardo Santos, André Coelho, João Santos,
- Abstract summary: TS40K is a 3D point cloud dataset that encompasses more than 40,000 Km on electrical transmission systems situated in European rural terrain.
This is not only a novel problem for the research community that can aid in the high-risk mission of power-grid inspection, but it also offers 3D point clouds with distinct characteristics from those in self-driving and indoor 3D data.
We evaluate the performance of state-of-the-art methods on our dataset concerning 3D semantic segmentation and 3D object detection.
- Score: 39.244727514293324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research on supervised learning algorithms in 3D scene understanding has risen in prominence and witness great increases in performance across several datasets. The leading force of this research is the problem of autonomous driving followed by indoor scene segmentation. However, openly available 3D data on these tasks mainly focuses on urban scenarios. In this paper, we propose TS40K, a 3D point cloud dataset that encompasses more than 40,000 Km on electrical transmission systems situated in European rural terrain. This is not only a novel problem for the research community that can aid in the high-risk mission of power-grid inspection, but it also offers 3D point clouds with distinct characteristics from those in self-driving and indoor 3D data, such as high point-density and no occlusion. In our dataset, each 3D point is labeled with 1 out of 22 annotated classes. We evaluate the performance of state-of-the-art methods on our dataset concerning 3D semantic segmentation and 3D object detection. Finally, we provide a comprehensive analysis of the results along with key challenges such as using labels that were not originally intended for learning tasks.
Related papers
- LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D
Object Detection [36.77084564823707]
deep learning methods heavily rely on annotated data and often face domain generalization issues.
LiDAR-CS dataset is the first dataset that addresses the sensor-related gaps in the domain of 3D object detection in real traffic.
arXiv Detail & Related papers (2023-01-29T19:10:35Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
We introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km2.
Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset.
arXiv Detail & Related papers (2022-01-12T14:48:11Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
A point cloud is a dense compilation of spatial data in 3D coordinates.
We propose a PointNet-based approach for 3D Multi-Object Tracking (MOT)
arXiv Detail & Related papers (2021-06-03T05:36:39Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Deep Learning Based 3D Segmentation: A Survey [42.44509605101214]
3D segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving and robotics.
Deep learning techniques have recently become the tool of choice for 3D segmentation tasks.
This paper comprehensively surveys the recent progress in deep learning-based 3D segmentation techniques.
arXiv Detail & Related papers (2021-03-09T13:58:35Z) - H3D: Benchmark on Semantic Segmentation of High-Resolution 3D Point
Clouds and textured Meshes from UAV LiDAR and Multi-View-Stereo [4.263987603222371]
This paper introduces a 3D dataset which is unique in three ways.
It depicts the village of Hessigheim (Germany) henceforth referred to as H3D.
It is designed for promoting research in the field of 3D data analysis on one hand and to evaluate and rank emerging approaches.
arXiv Detail & Related papers (2021-02-10T09:33:48Z) - RELLIS-3D Dataset: Data, Benchmarks and Analysis [16.803548871633957]
RELLIS-3D is a multimodal dataset collected in an off-road environment.
The data was collected on the Rellis Campus of Texas A&M University.
arXiv Detail & Related papers (2020-11-17T18:28:01Z) - PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding [107.02479689909164]
In this work, we aim at facilitating research on 3D representation learning.
We measure the effect of unsupervised pre-training on a large source set of 3D scenes.
arXiv Detail & Related papers (2020-07-21T17:59:22Z) - Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review [33.56857661598032]
We provide a systematic review of existing compelling deep learning architectures applied in LiDAR point clouds.
More than 140 key contributions in the recent five years are summarized in this survey.
arXiv Detail & Related papers (2020-05-20T03:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.