Graph Sparsification via Mixture of Graphs
- URL: http://arxiv.org/abs/2405.14260v2
- Date: Thu, 03 Oct 2024 12:42:40 GMT
- Title: Graph Sparsification via Mixture of Graphs
- Authors: Guibin Zhang, Xiangguo Sun, Yanwei Yue, Chonghe Jiang, Kun Wang, Tianlong Chen, Shirui Pan,
- Abstract summary: We introduce Mixture-of-Graphs (MoG) to dynamically select tailored pruning solutions for each node.
MoG incorporates multiple sparsifier experts, each characterized by unique sparsity levels and pruning criteria, and selects the appropriate experts for each node.
Experiments on four large-scale OGB datasets and two superpixel datasets, equipped with five GNNs, demonstrate that MoG identifies subgraphs at higher sparsity levels.
- Score: 67.40204130771967
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated superior performance across various graph learning tasks but face significant computational challenges when applied to large-scale graphs. One effective approach to mitigate these challenges is graph sparsification, which involves removing non-essential edges to reduce computational overhead. However, previous graph sparsification methods often rely on a single global sparsity setting and uniform pruning criteria, failing to provide customized sparsification schemes for each node's complex local context. In this paper, we introduce Mixture-of-Graphs (MoG), leveraging the concept of Mixture-of-Experts (MoE), to dynamically select tailored pruning solutions for each node. Specifically, MoG incorporates multiple sparsifier experts, each characterized by unique sparsity levels and pruning criteria, and selects the appropriate experts for each node. Subsequently, MoG performs a mixture of the sparse graphs produced by different experts on the Grassmann manifold to derive an optimal sparse graph. One notable property of MoG is its entirely local nature, as it depends on the specific circumstances of each individual node. Extensive experiments on four large-scale OGB datasets and two superpixel datasets, equipped with five GNN backbones, demonstrate that MoG (I) identifies subgraphs at higher sparsity levels ($8.67\%\sim 50.85\%$), with performance equal to or better than the dense graph, (II) achieves $1.47-2.62\times$ speedup in GNN inference with negligible performance drop, and (III) boosts ``top-student'' GNN performance ($1.02\%\uparrow$ on RevGNN+\textsc{ogbn-proteins} and $1.74\%\uparrow$ on DeeperGCN+\textsc{ogbg-ppa}).
Related papers
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
Graph neural networks (GNNs) are gaining popularity for processing graph-structured data.
Existing methods generally use a fixed number of GNN layers to generate representations for all graphs.
We propose the depth adaptive mixture of expert (DA-MoE) method, which incorporates two main improvements to GNN.
arXiv Detail & Related papers (2024-11-05T11:46:27Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Two Heads Are Better Than One: Boosting Graph Sparse Training via
Semantic and Topological Awareness [80.87683145376305]
Graph Neural Networks (GNNs) excel in various graph learning tasks but face computational challenges when applied to large-scale graphs.
We propose Graph Sparse Training ( GST), which dynamically manipulates sparsity at the data level.
GST produces a sparse graph with maximum topological integrity and no performance degradation.
arXiv Detail & Related papers (2024-02-02T09:10:35Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
Graph neural networks (GNNs) have found extensive applications in learning from graph data.
To bolster the generalization capacity of GNNs, it has become customary to augment training graph structures with techniques like graph augmentations.
This study introduces the concept of Mixture-of-Experts (MoE) to GNNs, with the aim of augmenting their capacity to adapt to a diverse range of training graph structures.
arXiv Detail & Related papers (2023-04-06T01:09:36Z) - $\rm A^2Q$: Aggregation-Aware Quantization for Graph Neural Networks [18.772128348519566]
We propose the Aggregation-Aware mixed-precision Quantization ($rm A2Q$) for Graph Neural Networks (GNNs)
Our method can achieve up to 11.4% and 9.5% accuracy improvements on the node-level and graph-level tasks, respectively, and up to 2x speedup on a dedicated hardware accelerator.
arXiv Detail & Related papers (2023-02-01T02:54:35Z) - NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation
Learning [26.79012993334157]
We present node-adaptive feature smoothing (NAFS), a simple non-parametric method that constructs node representations without parameter learning.
We conduct experiments on four benchmark datasets on two different application scenarios: node clustering and link prediction.
Remarkably, NAFS with feature ensemble outperforms the state-of-the-art GNNs on these tasks.
arXiv Detail & Related papers (2022-06-17T06:53:04Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.