Advancing Spiking Neural Networks for Sequential Modeling with Central Pattern Generators
- URL: http://arxiv.org/abs/2405.14362v2
- Date: Fri, 11 Oct 2024 07:03:45 GMT
- Title: Advancing Spiking Neural Networks for Sequential Modeling with Central Pattern Generators
- Authors: Changze Lv, Dongqi Han, Yansen Wang, Xiaoqing Zheng, Xuanjing Huang, Dongsheng Li,
- Abstract summary: Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks.
Applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding strategy.
We propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG.
- Score: 47.371024581669516
- License:
- Abstract: Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks that are both energy-efficient and biologically plausible. However, applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding (PE) strategy. Drawing inspiration from the central pattern generators (CPGs) in the human brain, which produce rhythmic patterned outputs without requiring rhythmic inputs, we propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG. Moreover, extensive experiments across various domains, including time-series forecasting, natural language processing, and image classification, show that SNNs with CPG-PE outperform their conventional counterparts. Additionally, we perform analysis experiments to elucidate the mechanism through which SNNs encode positional information and to explore the function of CPGs in the human brain. This investigation may offer valuable insights into the fundamental principles of neural computation. Our code is available at https://github.com/microsoft/SeqSNN.
Related papers
- Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
Spiking Neural Networks (SNNs) are known for their bio-plausibility and energy efficiency.
In this work, we explore the merger of novel computing and information encoding schemes in SNN architectures.
We investigate the tradeoffs of our proposal in terms of accuracy, inference latency, spiking sparsity, energy consumption, and datasets.
arXiv Detail & Related papers (2024-04-26T22:52:23Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Spiking Generative Adversarial Networks With a Neural Network
Discriminator: Local Training, Bayesian Models, and Continual Meta-Learning [31.78005607111787]
Training neural networks to reproduce spiking patterns is a central problem in neuromorphic computing.
This work proposes to train SNNs so as to match spiking signals rather than individual spiking signals.
arXiv Detail & Related papers (2021-11-02T17:20:54Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
Spiking Neural Networks (SNNs) have the unique ability to detect information in encoded-temporal signals.
We review models and training algorithms for the dominant approach that considers SNNs as a Recurrent Neural Network (RNN)
We describe an alternative approach that relies on probabilistic models for spiking neurons, allowing the derivation of local learning rules via gradient estimates.
arXiv Detail & Related papers (2020-10-27T11:47:42Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.