Poisson Variational Autoencoder
- URL: http://arxiv.org/abs/2405.14473v1
- Date: Thu, 23 May 2024 12:02:54 GMT
- Title: Poisson Variational Autoencoder
- Authors: Hadi Vafaii, Dekel Galor, Jacob L. Yates,
- Abstract summary: Variational autoencoders (VAE) employ Bayesian inference to interpret sensory inputs.
Here, we develop a novel architecture that combines principles of predictive coding with a VAE that encodes inputs into discrete spike counts.
Our work provides an interpretable computational framework to study brain-like sensory processing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational autoencoders (VAE) employ Bayesian inference to interpret sensory inputs, mirroring processes that occur in primate vision across both ventral (Higgins et al., 2021) and dorsal (Vafaii et al., 2023) pathways. Despite their success, traditional VAEs rely on continuous latent variables, which deviates sharply from the discrete nature of biological neurons. Here, we developed the Poisson VAE (P-VAE), a novel architecture that combines principles of predictive coding with a VAE that encodes inputs into discrete spike counts. Combining Poisson-distributed latent variables with predictive coding introduces a metabolic cost term in the model loss function, suggesting a relationship with sparse coding which we verify empirically. Additionally, we analyze the geometry of learned representations, contrasting the P-VAE to alternative VAE models. We find that the P-VAEencodes its inputs in relatively higher dimensions, facilitating linear separability of categories in a downstream classification task with a much better (5x) sample efficiency. Our work provides an interpretable computational framework to study brain-like sensory processing and paves the way for a deeper understanding of perception as an inferential process.
Related papers
- Theoretical Convergence Guarantees for Variational Autoencoders [2.8167997311962942]
Variational Autoencoders (VAE) are popular generative models used to sample from complex data distributions.
This paper aims to bridge that gap by providing non-asymptotic convergence guarantees for VAE trained using both Gradient Descent and Adam algorithms.
Our theoretical analysis applies to both Linear VAE and Deep Gaussian VAE, as well as several VAE variants, including $beta$-VAE and IWAE.
arXiv Detail & Related papers (2024-10-22T07:12:38Z) - Covariate-informed Representation Learning with Samplewise Optimal
Identifiable Variational Autoencoders [15.254297587065595]
Recently proposed identifiable variational autoencoder (iVAE) provides a promising approach for learning latent independent components of the data.
We develop a new approach, co-informed identifiable VAE (CI-iVAE)
In doing so, the objective function enforces the inverse relation, and learned representation contains more information of observations.
arXiv Detail & Related papers (2022-02-09T00:18:33Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Consistency Regularization for Variational Auto-Encoders [14.423556966548544]
Variational auto-encoders (VAEs) are a powerful approach to unsupervised learning.
We propose a regularization method to enforce consistency in VAEs.
arXiv Detail & Related papers (2021-05-31T10:26:32Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Iterative VAE as a predictive brain model for out-of-distribution
generalization [7.006301658267125]
We show that iVAEs generalize to distributional shifts significantly better than both PCNs and VAEs.
We propose a novel measure of recognizability for individual samples which can be tested against human psychophysical data.
arXiv Detail & Related papers (2020-12-01T15:02:38Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - MUTANT: A Training Paradigm for Out-of-Distribution Generalization in
Visual Question Answering [58.30291671877342]
We present MUTANT, a training paradigm that exposes the model to perceptually similar, yet semantically distinct mutations of the input.
MUTANT establishes a new state-of-the-art accuracy on VQA-CP with a $10.57%$ improvement.
arXiv Detail & Related papers (2020-09-18T00:22:54Z) - Quantitative Understanding of VAE as a Non-linearly Scaled Isometric
Embedding [52.48298164494608]
Variational autoencoder (VAE) estimates the posterior parameters of latent variables corresponding to each input data.
This paper provides a quantitative understanding of VAE property through the differential geometric and information-theoretic interpretations of VAE.
arXiv Detail & Related papers (2020-07-30T02:37:46Z) - Simple and Effective VAE Training with Calibrated Decoders [123.08908889310258]
Variational autoencoders (VAEs) provide an effective and simple method for modeling complex distributions.
We study the impact of calibrated decoders, which learn the uncertainty of the decoding distribution.
We propose a simple but novel modification to the commonly used Gaussian decoder, which computes the prediction variance analytically.
arXiv Detail & Related papers (2020-06-23T17:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.