Top-Down Partitioning for Efficient List-Wise Ranking
- URL: http://arxiv.org/abs/2405.14589v1
- Date: Thu, 23 May 2024 14:00:26 GMT
- Title: Top-Down Partitioning for Efficient List-Wise Ranking
- Authors: Andrew Parry, Sean MacAvaney, Debasis Ganguly,
- Abstract summary: We propose a novel algorithm that partitions a ranking to depth k and processes documents top-down.
Our algorithm is inherently parallelizable due to the use of a pivot element, which can be compared to documents down to an arbitrary depth concurrently.
- Score: 24.600506147325717
- License:
- Abstract: Large Language Models (LLMs) have significantly impacted many facets of natural language processing and information retrieval. Unlike previous encoder-based approaches, the enlarged context window of these generative models allows for ranking multiple documents at once, commonly called list-wise ranking. However, there are still limits to the number of documents that can be ranked in a single inference of the model, leading to the broad adoption of a sliding window approach to identify the k most relevant items in a ranked list. We argue that the sliding window approach is not well-suited for list-wise re-ranking because it (1) cannot be parallelized in its current form, (2) leads to redundant computational steps repeatedly re-scoring the best set of documents as it works its way up the initial ranking, and (3) prioritizes the lowest-ranked documents for scoring rather than the highest-ranked documents by taking a bottom-up approach. Motivated by these shortcomings and an initial study that shows list-wise rankers are biased towards relevant documents at the start of their context window, we propose a novel algorithm that partitions a ranking to depth k and processes documents top-down. Unlike sliding window approaches, our algorithm is inherently parallelizable due to the use of a pivot element, which can be compared to documents down to an arbitrary depth concurrently. In doing so, we reduce the number of expected inference calls by around 33% when ranking at depth 100 while matching the performance of prior approaches across multiple strong re-rankers.
Related papers
- Quam: Adaptive Retrieval through Query Affinity Modelling [15.3583908068962]
Building relevance models to rank documents based on user information needs is a central task in information retrieval and the NLP community.
We propose a unifying view of the nascent area of adaptive retrieval by proposing, Quam.
Our proposed approach, Quam improves the recall performance by up to 26% over the standard re-ranking baselines.
arXiv Detail & Related papers (2024-10-26T22:52:12Z) - AGRaME: Any-Granularity Ranking with Multi-Vector Embeddings [53.78802457488845]
We introduce the idea of any-granularity ranking, which leverages multi-vector embeddings to rank at varying levels of granularity.
We demonstrate the application of proposition-level ranking to post-hoc citation addition in retrieval-augmented generation.
arXiv Detail & Related papers (2024-05-23T20:04:54Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models [63.714662435555674]
Large language models (LLMs) exhibit positional bias in how they use context.
We propose permutation self-consistency, a form of self-consistency over ranking list outputs of black-box LLMs.
Our approach improves scores from conventional inference by up to 7-18% for GPT-3.5 and 8-16% for LLaMA v2 (70B)
arXiv Detail & Related papers (2023-10-11T17:59:02Z) - Replace Scoring with Arrangement: A Contextual Set-to-Arrangement
Framework for Learning-to-Rank [40.81502990315285]
Learning-to-rank is a core technique in the top-N recommendation task, where an ideal ranker would be a mapping from an item set to an arrangement.
Most existing solutions fall in the paradigm of probabilistic ranking principle (PRP), i.e., first score each item in the candidate set and then perform a sort operation to generate the top ranking list.
We propose Set-To-Arrangement Ranking (STARank), a new framework directly generates the permutations of the candidate items without the need for individually scoring and sort operations.
arXiv Detail & Related papers (2023-08-05T12:22:26Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
We present a framework for improving the performance of a wide class of retrieval models at minimal computational cost.
It utilizes precomputed document representations extracted by a base dense retrieval method.
It incurs a negligible computational overhead on top of any first-stage method at run time, allowing it to be easily combined with any state-of-the-art dense retrieval method.
arXiv Detail & Related papers (2021-12-16T10:25:26Z) - Improving Document Representations by Generating Pseudo Query Embeddings
for Dense Retrieval [11.465218502487959]
We design a method to mimic the queries on each of the documents by an iterative clustering process.
We also optimize the matching function with a two-step score calculation procedure.
Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results.
arXiv Detail & Related papers (2021-05-08T05:28:24Z) - Pre-training Tasks for Embedding-based Large-scale Retrieval [68.01167604281578]
We consider the large-scale query-document retrieval problem.
Given a query (e.g., a question), return the set of relevant documents from a large document corpus.
We show that the key ingredient of learning a strong embedding-based Transformer model is the set of pre-training tasks.
arXiv Detail & Related papers (2020-02-10T16:44:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.