Efficiency for Free: Ideal Data Are Transportable Representations
- URL: http://arxiv.org/abs/2405.14669v1
- Date: Thu, 23 May 2024 15:06:02 GMT
- Title: Efficiency for Free: Ideal Data Are Transportable Representations
- Authors: Peng Sun, Yi Jiang, Tao Lin,
- Abstract summary: We argue that model-generated representations converge to a shared linear space, facilitating effective linear transport between models.
We propose a Representation Learning Accelerator (ReLA), which leverages a task- and architecture-agnostic, yet publicly available, free model to form a dynamic data subset.
By employing a CLIP ViT B/16 as a prior model for dynamic data generation, ReLA-aided BYOL can train a ResNet-50 from scratch with 50% of ImageNet-1K, yielding performance surpassing that of training on the full dataset.
- Score: 12.358393766570732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data, the seminal opportunity and challenge in modern machine learning, currently constrains the scalability of representation learning and impedes the pace of model evolution. Existing paradigms tackle the issue of learning efficiency over massive datasets from the perspective of self-supervised learning and dataset distillation independently, while neglecting the untapped potential of accelerating representation learning from an intermediate standpoint. In this work, we delve into defining the ideal data properties from both optimization and generalization perspectives. We propose that model-generated representations, despite being trained on diverse tasks and architectures, converge to a shared linear space, facilitating effective linear transport between models. Furthermore, we demonstrate that these representations exhibit properties conducive to the formation of ideal data. The theoretical/empirical insights therein inspire us to propose a Representation Learning Accelerator (ReLA), which leverages a task- and architecture-agnostic, yet publicly available, free model to form a dynamic data subset and thus accelerate (self-)supervised learning. For instance, employing a CLIP ViT B/16 as a prior model for dynamic data generation, ReLA-aided BYOL can train a ResNet-50 from scratch with 50% of ImageNet-1K, yielding performance surpassing that of training on the full dataset. Additionally, employing a ResNet-18 pre-trained on CIFAR-10 can enhance ResNet-50 training on 10% of ImageNet-1K, resulting in a 7.7% increase in accuracy.
Related papers
- Train Once, Forget Precisely: Anchored Optimization for Efficient Post-Hoc Unlearning [0.0]
We introduce textbfForget-Aligned Model Reconstruction (FAMR), a theoretically grounded and computationally efficient framework for post-hoc unlearning in deep image classifiers.<n>FAMR frames forgetting as a constrained optimization problem that minimizes a uniformprediction loss on the forget set while anchoring model parameters to their original values.<n> Empirical results on class forgetting tasks using CIFAR-10 and ImageNet-100 FAMR's effectiveness, with strong performance retention and minimal computational overhead.
arXiv Detail & Related papers (2025-06-17T13:40:48Z) - When Does Visual Prompting Outperform Linear Probing for Vision-Language Models? A Likelihood Perspective [57.05315507519704]
We propose a log-likelihood ratio (LLR) approach to analyze the comparative benefits of visual prompting and linear probing.
Our measure attains up to a 100-fold reduction in run time compared to full training, while achieving prediction accuracies up to 91%.
arXiv Detail & Related papers (2024-09-03T12:03:45Z) - Effective pruning of web-scale datasets based on complexity of concept
clusters [48.125618324485195]
We present a method for pruning large-scale multimodal datasets for training CLIP-style models on ImageNet.
We find that training on a smaller set of high-quality data can lead to higher performance with significantly lower training costs.
We achieve a new state-of-the-art Imagehttps://info.arxiv.org/help/prep#commentsNet zero-shot accuracy and a competitive average zero-shot accuracy on 38 evaluation tasks.
arXiv Detail & Related papers (2024-01-09T14:32:24Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers)
As an off-the-shelf method, it reduces the wall-time training cost of a wide variety of popular models by >1.5x on ImageNet-1K/22K without sacrificing accuracy.
arXiv Detail & Related papers (2022-11-17T17:38:55Z) - Harnessing the Power of Explanations for Incremental Training: A
LIME-Based Approach [6.244905619201076]
In this work, model explanations are fed back to the feed-forward training to help the model generalize better.
The framework incorporates the custom weighted loss with Elastic Weight Consolidation (EWC) to maintain performance in sequential testing sets.
The proposed custom training procedure results in a consistent enhancement of accuracy ranging from 0.5% to 1.5% throughout all phases of the incremental learning setup.
arXiv Detail & Related papers (2022-11-02T18:16:17Z) - Where Should I Spend My FLOPS? Efficiency Evaluations of Visual
Pre-training Methods [29.141145775835106]
Given a fixed FLOP budget, what are the best datasets, models, and (self-supervised) training methods for obtaining high accuracy on representative visual tasks?
We examine five large-scale datasets (JFT-300M, ALIGN, ImageNet-1K, ImageNet-21K, and COCO) and six pre-training methods (CLIP, DINO, SimCLR, BYOL, Masked Autoencoding, and supervised)
Our results call into question the commonly-held assumption that self-supervised methods inherently scale to large, uncurated data.
arXiv Detail & Related papers (2022-09-30T17:04:55Z) - Knowledge Distillation as Efficient Pre-training: Faster Convergence,
Higher Data-efficiency, and Better Transferability [53.27240222619834]
Knowledge Distillation as Efficient Pre-training aims to efficiently transfer the learned feature representation from pre-trained models to new student models for future downstream tasks.
Our method performs comparably with supervised pre-training counterparts in 3 downstream tasks and 9 downstream datasets requiring 10x less data and 5x less pre-training time.
arXiv Detail & Related papers (2022-03-10T06:23:41Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
In this paper, we develop a parameter efficient transfer learning architecture, termed as PeterRec.
PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks.
We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks.
arXiv Detail & Related papers (2020-01-13T14:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.