CoPeD-Advancing Multi-Robot Collaborative Perception: A Comprehensive Dataset in Real-World Environments
- URL: http://arxiv.org/abs/2405.14731v1
- Date: Thu, 23 May 2024 15:59:48 GMT
- Title: CoPeD-Advancing Multi-Robot Collaborative Perception: A Comprehensive Dataset in Real-World Environments
- Authors: Yang Zhou, Long Quang, Carlos Nieto-Granda, Giuseppe Loianno,
- Abstract summary: This paper presents a pioneering and comprehensive real-world multi-robot collaborative perception dataset.
It features raw sensor inputs, pose estimation, and optional high-level perception annotation.
We believe this work will unlock the potential research of high-level scene understanding through multi-modal collaborative perception in multi-robot settings.
- Score: 8.177157078744571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past decade, although single-robot perception has made significant advancements, the exploration of multi-robot collaborative perception remains largely unexplored. This involves fusing compressed, intermittent, limited, heterogeneous, and asynchronous environmental information across multiple robots to enhance overall perception, despite challenges like sensor noise, occlusions, and sensor failures. One major hurdle has been the lack of real-world datasets. This paper presents a pioneering and comprehensive real-world multi-robot collaborative perception dataset to boost research in this area. Our dataset leverages the untapped potential of air-ground robot collaboration featuring distinct spatial viewpoints, complementary robot mobilities, coverage ranges, and sensor modalities. It features raw sensor inputs, pose estimation, and optional high-level perception annotation, thus accommodating diverse research interests. Compared to existing datasets predominantly designed for Simultaneous Localization and Mapping (SLAM), our setup ensures a diverse range and adequate overlap of sensor views to facilitate the study of multi-robot collaborative perception algorithms. We demonstrate the value of this dataset qualitatively through multiple collaborative perception tasks. We believe this work will unlock the potential research of high-level scene understanding through multi-modal collaborative perception in multi-robot settings.
Related papers
- JRDB-PanoTrack: An Open-world Panoptic Segmentation and Tracking Robotic Dataset in Crowded Human Environments [33.85323884177833]
JRDB-PanoTrack is a novel open-world panoptic segmentation and tracking benchmark for environment understanding in robot systems.
JRDB-PanoTrack includes (1) various data involving indoor and outdoor crowded scenes, as well as comprehensive 2D and 3D synchronized data modalities.
Various object classes for closed- and open-world recognition benchmarks, with OSPA-based metrics for evaluation.
arXiv Detail & Related papers (2024-04-02T06:43:22Z) - Teaching Unknown Objects by Leveraging Human Gaze and Augmented Reality
in Human-Robot Interaction [3.1473798197405953]
This dissertation aims to teach a robot unknown objects in the context of Human-Robot Interaction (HRI)
The combination of eye tracking and Augmented Reality created a powerful synergy that empowered the human teacher to communicate with the robot.
The robot's object detection capabilities exhibited comparable performance to state-of-the-art object detectors trained on extensive datasets.
arXiv Detail & Related papers (2023-12-12T11:34:43Z) - From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban
Search and Rescue [46.377510400989536]
We present a novel hybrid algorithm for efficient multi-robot exploration in unknown environments with limited communication and no global positioning information.
We redefine the local best and global best positions to suit scenarios without continuous target information.
The presented work holds promise for enhancing multi-robot exploration in scenarios with limited information and communication capabilities.
arXiv Detail & Related papers (2023-11-28T17:05:25Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
We introduce a new dataset called Robot Control Gestures (RoCoG-v2)
The dataset is composed of both real and synthetic videos from seven gesture classes.
We present results using state-of-the-art action recognition and domain adaptation algorithms.
arXiv Detail & Related papers (2023-03-17T23:23:55Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
We introduce MetaGraspNet, a large-scale photo-realistic bin picking dataset constructed via physics-based metaverse synthesis.
The proposed dataset contains 217k RGBD images across 82 different article types, with full annotations for object detection, amodal perception, keypoint detection, manipulation order and ambidextrous grasp labels for a parallel-jaw and vacuum gripper.
We also provide a real dataset consisting of over 2.3k fully annotated high-quality RGBD images, divided into 5 levels of difficulties and an unseen object set to evaluate different object and layout properties.
arXiv Detail & Related papers (2022-08-08T08:15:34Z) - Multi-Robot Collaborative Perception with Graph Neural Networks [6.383576104583731]
We propose a general-purpose Graph Neural Network (GNN) with the main goal to increase, in multi-robot perception tasks.
We show that the proposed framework can address multi-view visual perception problems such as monocular depth estimation and semantic segmentation.
arXiv Detail & Related papers (2022-01-05T18:47:07Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Enhancing Multi-Robot Perception via Learned Data Association [37.866254392010454]
We address the multi-robot collaborative perception problem, specifically in the context of multi-view infilling for distributed semantic segmentation.
We propose the Multi-Agent Infilling Network: an neural architecture that can be deployed to each agent in a robotic swarm.
Specifically, each robot is in charge of locally encoding and decoding visual information, and an neural mechanism allows for an uncertainty-aware and context-based exchange of intermediate features.
arXiv Detail & Related papers (2021-07-01T22:45:26Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.