Neural Directional Encoding for Efficient and Accurate View-Dependent Appearance Modeling
- URL: http://arxiv.org/abs/2405.14847v1
- Date: Thu, 23 May 2024 17:56:34 GMT
- Title: Neural Directional Encoding for Efficient and Accurate View-Dependent Appearance Modeling
- Authors: Liwen Wu, Sai Bi, Zexiang Xu, Fujun Luan, Kai Zhang, Iliyan Georgiev, Kalyan Sunkavalli, Ravi Ramamoorthi,
- Abstract summary: NDE transfers the concept of feature-grid-based spatial encoding to the angular domain.
Experiments on both synthetic and real datasets show that a NeRF model with NDE outperforms the state of the art on view synthesis of specular objects.
- Score: 47.86734601629109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Novel-view synthesis of specular objects like shiny metals or glossy paints remains a significant challenge. Not only the glossy appearance but also global illumination effects, including reflections of other objects in the environment, are critical components to faithfully reproduce a scene. In this paper, we present Neural Directional Encoding (NDE), a view-dependent appearance encoding of neural radiance fields (NeRF) for rendering specular objects. NDE transfers the concept of feature-grid-based spatial encoding to the angular domain, significantly improving the ability to model high-frequency angular signals. In contrast to previous methods that use encoding functions with only angular input, we additionally cone-trace spatial features to obtain a spatially varying directional encoding, which addresses the challenging interreflection effects. Extensive experiments on both synthetic and real datasets show that a NeRF model with NDE (1) outperforms the state of the art on view synthesis of specular objects, and (2) works with small networks to allow fast (real-time) inference. The project webpage and source code are available at: \url{https://lwwu2.github.io/nde/}.
Related papers
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - Inverse Rendering of Glossy Objects via the Neural Plenoptic Function and Radiance Fields [45.64333510966844]
Inverse rendering aims at recovering both geometry and materials of objects.
We propose a novel 5D Neural Plenoptic Function (NeP) based on NeRFs and ray tracing.
Our method can reconstruct high-fidelity geometry/materials of challenging glossy objects with complex lighting interactions from nearby objects.
arXiv Detail & Related papers (2024-03-24T16:34:47Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Anisotropic Neural Representation Learning for High-Quality Neural
Rendering [0.0]
We propose an anisotropic neural representation learning method that utilizes learnable view-dependent features to improve scene representation and reconstruction.
Our method is flexiable and can be plugged into NeRF-based frameworks.
arXiv Detail & Related papers (2023-11-30T07:29:30Z) - NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient
Illumination [28.433403714053103]
We propose a framework named neural ambient illumination (NeAI)
NeAI uses Neural Radiance Fields (NeRF) as a lighting model to handle complex lighting in a physically based way.
Experiments demonstrate the superior performance of novel-view rendering compared to previous works.
arXiv Detail & Related papers (2023-04-18T06:32:30Z) - Is Attention All NeRF Needs? [103.51023982774599]
Generalizable NeRF Transformer (GNT) is a pure, unified transformer-based architecture that efficiently reconstructs Neural Radiance Fields (NeRFs) on the fly from source views.
GNT achieves generalizable neural scene representation and rendering, by encapsulating two transformer-based stages.
arXiv Detail & Related papers (2022-07-27T05:09:54Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
We propose a novel multitask auto encoding transformation (MAET) model to enhance object detection in a dark environment.
In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation.
We have achieved the state-of-the-art performance using synthetic and real-world datasets.
arXiv Detail & Related papers (2022-05-06T16:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.