AdjointDEIS: Efficient Gradients for Diffusion Models
- URL: http://arxiv.org/abs/2405.15020v2
- Date: Fri, 01 Nov 2024 19:27:35 GMT
- Title: AdjointDEIS: Efficient Gradients for Diffusion Models
- Authors: Zander W. Blasingame, Chen Liu,
- Abstract summary: We show that continuous adjoint equations for diffusion SDEs actually simplify to a simple ODE.
We also demonstrate the effectiveness of AdjointDEIS for guided generation with an adversarial attack in the form of the face morphing problem.
- Score: 2.0795007613453445
- License:
- Abstract: The optimization of the latents and parameters of diffusion models with respect to some differentiable metric defined on the output of the model is a challenging and complex problem. The sampling for diffusion models is done by solving either the probability flow ODE or diffusion SDE wherein a neural network approximates the score function allowing a numerical ODE/SDE solver to be used. However, naive backpropagation techniques are memory intensive, requiring the storage of all intermediate states, and face additional complexity in handling the injected noise from the diffusion term of the diffusion SDE. We propose a novel family of bespoke ODE solvers to the continuous adjoint equations for diffusion models, which we call AdjointDEIS. We exploit the unique construction of diffusion SDEs to further simplify the formulation of the continuous adjoint equations using exponential integrators. Moreover, we provide convergence order guarantees for our bespoke solvers. Significantly, we show that continuous adjoint equations for diffusion SDEs actually simplify to a simple ODE. Lastly, we demonstrate the effectiveness of AdjointDEIS for guided generation with an adversarial attack in the form of the face morphing problem. Our code will be released on our project page https://zblasingame.github.io/AdjointDEIS/
Related papers
- Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms.
We tackle this problem with Schrodinger Bridges (SBs), which are differential equations (SDEs) between distributions with minimal transport cost.
Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion.
We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of cost required by previous DM-
arXiv Detail & Related papers (2024-11-22T11:24:14Z) - Closing the ODE-SDE gap in score-based diffusion models through the
Fokker-Planck equation [0.562479170374811]
We rigorously describe the range of dynamics and approximations that arise when training score-based diffusion models.
We show numerically that conventional score-based diffusion models can exhibit significant differences between ODE- and SDE-induced distributions.
arXiv Detail & Related papers (2023-11-27T16:44:50Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
We show that diffusion models frequently exhibit the infinite Lipschitz near the zero point of timesteps.
This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations.
We propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz of the diffusion model near zero.
arXiv Detail & Related papers (2023-06-20T03:05:28Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
We study the problem mathematically for two limiting scenarios: the zero diffusion (ODE) case and the large diffusion case.
Our findings indicate that when the perturbation occurs at the end of the generative process, the ODE model outperforms the SDE model with a large diffusion coefficient.
arXiv Detail & Related papers (2023-06-03T09:27:15Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - SEEDS: Exponential SDE Solvers for Fast High-Quality Sampling from
Diffusion Models [0.49478969093606673]
A potent class of generative models known as Diffusion Probabilistic Models (DPMs) has become prominent.
Despite being quick, such solvers do not usually reach the optimal quality achieved by available slow SDE solvers.
Our goal is to propose SDE solvers that reach optimal quality without requiring several hundreds or thousands of NFEs to achieve that goal.
arXiv Detail & Related papers (2023-05-23T17:19:54Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Diffusion Normalizing Flow [4.94950858749529]
We present a novel generative modeling method called diffusion normalizing flow based on differential equations (SDEs)
The algorithm consists of two neural SDEs: a forward SDE that gradually adds noise to the data to transform the data into Gaussian random noise, and a backward SDE that gradually removes the noise to sample from the data distribution.
Our algorithm demonstrates competitive performance in both high-dimension data density estimation and image generation tasks.
arXiv Detail & Related papers (2021-10-14T17:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.