ARVideo: Autoregressive Pretraining for Self-Supervised Video Representation Learning
- URL: http://arxiv.org/abs/2405.15160v1
- Date: Fri, 24 May 2024 02:29:03 GMT
- Title: ARVideo: Autoregressive Pretraining for Self-Supervised Video Representation Learning
- Authors: Sucheng Ren, Hongru Zhu, Chen Wei, Yijiang Li, Alan Yuille, Cihang Xie,
- Abstract summary: This paper presents a new self-supervised video representation learning framework, ARVideo, which autoregressively predicts the next video token in a tailored sequence order.
Extensive experiments establish ARVideo as an effective paradigm for self-supervised video representation learning.
- Score: 29.620990627792906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new self-supervised video representation learning framework, ARVideo, which autoregressively predicts the next video token in a tailored sequence order. Two key designs are included. First, we organize autoregressive video tokens into clusters that span both spatially and temporally, thereby enabling a richer aggregation of contextual information compared to the standard spatial-only or temporal-only clusters. Second, we adopt a randomized spatiotemporal prediction order to facilitate learning from multi-dimensional data, addressing the limitations of a handcrafted spatial-first or temporal-first sequence order. Extensive experiments establish ARVideo as an effective paradigm for self-supervised video representation learning. For example, when trained with the ViT-B backbone, ARVideo competitively attains 81.2% on Kinetics-400 and 70.9% on Something-Something V2, which are on par with the strong benchmark set by VideoMAE. Importantly, ARVideo also demonstrates higher training efficiency, i.e., it trains 14% faster and requires 58% less GPU memory compared to VideoMAE.
Related papers
- Towards Video Anomaly Retrieval from Video Anomaly Detection: New
Benchmarks and Model [70.97446870672069]
Video anomaly detection (VAD) has been paid increasing attention due to its potential applications.
Video Anomaly Retrieval ( VAR) aims to pragmatically retrieve relevant anomalous videos by cross-modalities.
We present two benchmarks, UCFCrime-AR and XD-Violence, constructed on top of prevalent anomaly datasets.
arXiv Detail & Related papers (2023-07-24T06:22:37Z) - Just a Glimpse: Rethinking Temporal Information for Video Continual
Learning [58.7097258722291]
We propose a novel replay mechanism for effective video continual learning based on individual/single frames.
Under extreme memory constraints, video diversity plays a more significant role than temporal information.
Our method achieves state-of-the-art performance, outperforming the previous state-of-the-art by up to 21.49%.
arXiv Detail & Related papers (2023-05-28T19:14:25Z) - InternVideo: General Video Foundation Models via Generative and
Discriminative Learning [52.69422763715118]
We present general video foundation models, InternVideo, for dynamic and complex video-level understanding tasks.
InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives.
InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications.
arXiv Detail & Related papers (2022-12-06T18:09:49Z) - Self-supervised and Weakly Supervised Contrastive Learning for
Frame-wise Action Representations [26.09611987412578]
We introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner.
Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context.
Our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference.
arXiv Detail & Related papers (2022-12-06T16:42:22Z) - Learn2Augment: Learning to Composite Videos for Data Augmentation in
Action Recognition [47.470845728457135]
We learn what makes a good video for action recognition and select only high-quality samples for augmentation.
We learn which pairs of videos to augment without having to actually composite them.
We see improvements of up to 8.6% in the semi-supervised setting.
arXiv Detail & Related papers (2022-06-09T23:04:52Z) - Frame-wise Action Representations for Long Videos via Sequence
Contrastive Learning [44.412145665354736]
We introduce a novel contrastive action representation learning framework to learn frame-wise action representations.
Inspired by the recent progress of self-supervised learning, we present a novel sequence contrastive loss (SCL) applied on two correlated views.
Our approach also shows outstanding performance on video alignment and fine-grained frame retrieval tasks.
arXiv Detail & Related papers (2022-03-28T17:59:54Z) - Beyond Short Clips: End-to-End Video-Level Learning with Collaborative
Memories [56.91664227337115]
We introduce a collaborative memory mechanism that encodes information across multiple sampled clips of a video at each training iteration.
This enables the learning of long-range dependencies beyond a single clip.
Our proposed framework is end-to-end trainable and significantly improves the accuracy of video classification at a negligible computational overhead.
arXiv Detail & Related papers (2021-04-02T18:59:09Z) - TCLR: Temporal Contrastive Learning for Video Representation [49.6637562402604]
We develop a new temporal contrastive learning framework consisting of two novel losses to improve upon existing contrastive self-supervised video representation learning methods.
With the commonly used 3D-ResNet-18 architecture, we achieve 82.4% (+5.1% increase over the previous best) top-1 accuracy on UCF101 and 52.9% (+5.4% increase) on HMDB51 action classification.
arXiv Detail & Related papers (2021-01-20T05:38:16Z) - Spatiotemporal Contrastive Video Representation Learning [87.56145031149869]
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn visual representations from unlabeled videos.
Our representations are learned using a contrasttemporalive loss, where two augmented clips from the same short video are pulled together in the embedding space.
We study what makes for good data augmentations for video self-supervised learning and find that both spatial and temporal information are crucial.
arXiv Detail & Related papers (2020-08-09T19:58:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.