Minimizing UCB: a Better Local Search Strategy in Local Bayesian Optimization
- URL: http://arxiv.org/abs/2405.15285v1
- Date: Fri, 24 May 2024 07:17:24 GMT
- Title: Minimizing UCB: a Better Local Search Strategy in Local Bayesian Optimization
- Authors: Zheyi Fan, Wenyu Wang, Szu Hui Ng, Qingpei Hu,
- Abstract summary: We develop the relationship between the steps of the gradient descent method and one that minimizes the Upper Confidence Bound (UCB)
We propose a new local Bayesian optimization algorithm, MinUCB, which replaces the gradient descent step with minimizing UCB in GIBO.
We apply our algorithms on different synthetic and real-world functions, and the results show the effectiveness of our method.
- Score: 9.120912236055544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Local Bayesian optimization is a promising practical approach to solve the high dimensional black-box function optimization problem. Among them is the approximated gradient class of methods, which implements a strategy similar to gradient descent. These methods have achieved good experimental results and theoretical guarantees. However, given the distributional properties of the Gaussian processes applied on these methods, there may be potential to further exploit the information of the Gaussian processes to facilitate the BO search. In this work, we develop the relationship between the steps of the gradient descent method and one that minimizes the Upper Confidence Bound (UCB), and show that the latter can be a better strategy than direct gradient descent when a Gaussian process is applied as a surrogate. Through this insight, we propose a new local Bayesian optimization algorithm, MinUCB, which replaces the gradient descent step with minimizing UCB in GIBO. We further show that MinUCB maintains a similar convergence rate with GIBO. We then improve the acquisition function of MinUCB further through a look ahead strategy, and obtain a more efficient algorithm LA-MinUCB. We apply our algorithms on different synthetic and real-world functions, and the results show the effectiveness of our method. Our algorithms also illustrate improvements on local search strategies from an upper bound perspective in Bayesian optimization, and provides a new direction for future algorithm design.
Related papers
- A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
We present a new swarm-swarm-based framework utilizing the underlying dynamical process of descent.
The biggest advantage of this approach is greater exploration around the current state before deciding descent descent.
arXiv Detail & Related papers (2022-11-26T09:06:15Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Improved Binary Forward Exploration: Learning Rate Scheduling Method for
Stochastic Optimization [3.541406632811038]
A new gradient-based optimization approach by automatically scheduling the learning rate has been proposed recently, which is called Binary Forward Exploration (BFE)
In this paper, the improved algorithms based on them will be investigated, in order to optimize the efficiency and robustness of the new methodology.
The goal of this method does not aim to beat others but provide a different viewpoint to optimize the gradient descent process.
arXiv Detail & Related papers (2022-07-09T05:28:44Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Bregman Gradient Policy Optimization [97.73041344738117]
We design a Bregman gradient policy optimization for reinforcement learning based on Bregman divergences and momentum techniques.
VR-BGPO reaches the best complexity $tilde(epsilon-3)$ for finding an $epsilon$stationary point only requiring one trajectory at each iteration.
arXiv Detail & Related papers (2021-06-23T01:08:54Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
Spaces [63.22864716473051]
We propose a novel BO algorithm which expands (and shifts) the search space over iterations.
We show theoretically that for both our algorithms, the cumulative regret grows at sub-linear rates.
arXiv Detail & Related papers (2020-09-05T14:24:40Z) - An adaptive stochastic gradient-free approach for high-dimensional
blackbox optimization [0.0]
We propose an adaptive gradient-free (ASGF) approach for high-dimensional non-smoothing problems.
We illustrate the performance of this method on benchmark global problems and learning tasks.
arXiv Detail & Related papers (2020-06-18T22:47:58Z) - Learning to be Global Optimizer [28.88646928299302]
We learn an optimal network and escaping capability algorithm for some benchmark functions.
We show that the learned algorithm significantly outperforms some well-known classical optimization algorithms.
arXiv Detail & Related papers (2020-03-10T03:46:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.