Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs
- URL: http://arxiv.org/abs/2405.15485v1
- Date: Fri, 24 May 2024 12:04:54 GMT
- Title: Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs
- Authors: Siyuan Guo, Aniket Didolkar, Nan Rosemary Ke, Anirudh Goyal, Ferenc Huszár, Bernhard Schölkopf,
- Abstract summary: This paper assesses the domain knowledge of LLMs through its understanding of different mathematical skills required to solve problems.
Motivated by the use of LLMs as a general scientific assistant, we propose textitNTKEval to assess changes in LLM's probability distribution.
Our systematic analysis finds evidence of domain understanding during in-context learning.
Certain instruction-tuning leads to similar performance changes irrespective of training on different data, suggesting a lack of domain understanding across different skills.
- Score: 58.09253149867228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We are beginning to see progress in language model assisted scientific discovery. Motivated by the use of LLMs as a general scientific assistant, this paper assesses the domain knowledge of LLMs through its understanding of different mathematical skills required to solve problems. In particular, we look at not just what the pre-trained model already knows, but how it learned to learn from information during in-context learning or instruction-tuning through exploiting the complex knowledge structure within mathematics. Motivated by the Neural Tangent Kernel (NTK), we propose \textit{NTKEval} to assess changes in LLM's probability distribution via training on different kinds of math data. Our systematic analysis finds evidence of domain understanding during in-context learning. By contrast, certain instruction-tuning leads to similar performance changes irrespective of training on different data, suggesting a lack of domain understanding across different skills.
Related papers
- Sparse Autoencoders Reveal Temporal Difference Learning in Large Language Models [7.115323364355489]
In-context learning, the ability to adapt based on a few examples in the input prompt, is a ubiquitous feature of large language models (LLMs)
We first show that Llama $3$ $70$B can solve simple RL problems in-context.
We then analyze the residual stream of Llama using Sparse Autoencoders (SAEs) and find representations that closely match temporal difference (TD) errors.
arXiv Detail & Related papers (2024-10-02T06:51:12Z) - Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron [3.069335774032178]
We use a dataset-process approach to derive flow equations describing learning.
We characterize the effects of the learning rule (supervised or reinforcement learning, SL/RL) and input-data distribution on the perceptron's learning curve.
This approach points a way toward analyzing learning dynamics for more-complex circuit architectures.
arXiv Detail & Related papers (2024-09-05T17:58:28Z) - Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK) is a comprehensive framework for knowledge reasoning.
CoK includes methodologies for both dataset construction and model learning.
We conduct extensive experiments with KnowReason.
arXiv Detail & Related papers (2024-06-30T10:49:32Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Towards Reliable Latent Knowledge Estimation in LLMs: In-Context Learning vs. Prompting Based Factual Knowledge Extraction [15.534647327246239]
We propose an approach for estimating the latent knowledge embedded inside large language models (LLMs)
We leverage the in-context learning abilities of LLMs to estimate the extent to which an LLM knows the facts stored in a knowledge base.
arXiv Detail & Related papers (2024-04-19T15:40:39Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - MechGPT, a language-based strategy for mechanics and materials modeling
that connects knowledge across scales, disciplines and modalities [0.0]
We use a Large Language Model (LLM) to distill question-answer pairs from raw sources followed by fine-tuning.
The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas.
arXiv Detail & Related papers (2023-10-16T14:29:35Z) - Can LMs Learn New Entities from Descriptions? Challenges in Propagating
Injected Knowledge [72.63368052592004]
We study LMs' abilities to make inferences based on injected facts (or propagate those facts)
We find that existing methods for updating knowledge show little propagation of injected knowledge.
Yet, prepending entity definitions in an LM's context improves performance across all settings.
arXiv Detail & Related papers (2023-05-02T17:59:46Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.