Mosaic Memory: Fuzzy Duplication in Copyright Traps for Large Language Models
- URL: http://arxiv.org/abs/2405.15523v1
- Date: Fri, 24 May 2024 13:05:05 GMT
- Title: Mosaic Memory: Fuzzy Duplication in Copyright Traps for Large Language Models
- Authors: Igor Shilov, Matthieu Meeus, Yves-Alexandre de Montjoye,
- Abstract summary: Copyright traps have been proposed to be injected into the original content, improving content detectability in newly released LLMs.
Traps rely on the exact duplication of a unique text sequence, leaving them vulnerable to commonly deployed data deduplication techniques.
We propose the generation of fuzzy copyright traps, featuring slight modifications across duplication.
- Score: 7.405082919188384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The immense datasets used to develop Large Language Models (LLMs) often include copyright-protected content, typically without the content creator's consent. Copyright traps have been proposed to be injected into the original content, improving content detectability in newly released LLMs. Traps, however, rely on the exact duplication of a unique text sequence, leaving them vulnerable to commonly deployed data deduplication techniques. We here propose the generation of fuzzy copyright traps, featuring slight modifications across duplication. When injected in the fine-tuning data of a 1.3B LLM, we show fuzzy trap sequences to be memorized nearly as well as exact duplicates. Specifically, the Membership Inference Attack (MIA) ROC AUC only drops from 0.90 to 0.87 when 4 tokens are replaced across the fuzzy duplicates. We also find that selecting replacement positions to minimize the exact overlap between fuzzy duplicates leads to similar memorization, while making fuzzy duplicates highly unlikely to be removed by any deduplication process. Lastly, we argue that the fact that LLMs memorize across fuzzy duplicates challenges the study of LLM memorization relying on naturally occurring duplicates. Indeed, we find that the commonly used training dataset, The Pile, contains significant amounts of fuzzy duplicates. This introduces a previously unexplored confounding factor in post-hoc studies of LLM memorization, and questions the effectiveness of (exact) data deduplication as a privacy protection technique.
Related papers
- CopyLens: Dynamically Flagging Copyrighted Sub-Dataset Contributions to LLM Outputs [39.425944445393945]
We introduce CopyLens, a framework to analyze how copyrighted datasets may influence Large Language Models responses.
Experiments show that CopyLens improves efficiency and accuracy by 15.2% over our proposed baseline, 58.7% over prompt engineering methods, and 0.21 AUC over OOD detection baselines.
arXiv Detail & Related papers (2024-10-06T11:41:39Z) - On the Effect of (Near) Duplicate Subwords in Language Modelling [43.18042176382878]
We study the impact of near duplicate subwords on LM training efficiency.
We find that LMs need roughly 17% more data when trained in a fully duplicated setting.
Although subword duplication negatively impacts LM training efficiency, naturally occurring near duplicates may not be as similar as anticipated.
arXiv Detail & Related papers (2024-04-09T17:57:29Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
We introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent.
We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements.
Our findings show that instruction-tuned models can expose pre-training data as much as their base-models, if not more so, and using instructions proposed by other LLMs can open a new avenue of automated attacks.
arXiv Detail & Related papers (2024-03-05T19:32:01Z) - FKA-Owl: Advancing Multimodal Fake News Detection through Knowledge-Augmented LVLMs [48.32113486904612]
We propose FKA-Owl, a framework that leverages forgery-specific knowledge to augment Large Vision-Language Models (LVLMs)
Experiments on the public benchmark demonstrate that FKA-Owl achieves superior cross-domain performance compared to previous methods.
arXiv Detail & Related papers (2024-03-04T12:35:09Z) - Copyright Traps for Large Language Models [6.902279764206365]
We propose to use copyright traps to detect the use of copyrighted content in large language models.
We train a 1.3B model from scratch and insert traps into original content (books)
We show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods.
arXiv Detail & Related papers (2024-02-14T18:09:53Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
Large language models (LLMs) are prone to hallucinations, generating content that deviates from facts seen during pretraining.
We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs.
We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts.
arXiv Detail & Related papers (2023-09-07T17:45:31Z) - Mitigating the Learning Bias towards Repetition by Self-Contrastive
Training for Open-Ended Generation [92.42032403795879]
We show that pretrained language models (LMs) such as GPT2 still tend to generate repetitive texts.
We attribute their overestimation of token-level repetition probabilities to the learning bias.
We find that LMs use longer-range dependencies to predict repetitive tokens than non-repetitive ones, which may be the cause of sentence-level repetition loops.
arXiv Detail & Related papers (2023-07-04T07:53:55Z) - Understanding and Mitigating Copying in Diffusion Models [53.03978584040557]
Images generated by diffusion models like Stable Diffusion are increasingly widespread.
Recent works and even lawsuits have shown that these models are prone to replicating their training data, unbeknownst to the user.
arXiv Detail & Related papers (2023-05-31T17:58:02Z) - Semantic Compression With Large Language Models [1.0874100424278175]
Large language models (LLMs) are revolutionizing information retrieval, question answering, summarization, and code generation tasks.
LLMs are inherently limited by the number of input and output tokens that can be processed at once.
This paper presents three contributions to research on LLMs.
arXiv Detail & Related papers (2023-04-25T01:47:05Z) - Quantifying Memorization Across Neural Language Models [61.58529162310382]
Large language models (LMs) have been shown to memorize parts of their training data, and when prompted appropriately, they will emit the memorized data verbatim.
This is undesirable because memorization violates privacy (exposing user data), degrades utility (repeated easy-to-memorize text is often low quality), and hurts fairness (some texts are memorized over others).
We describe three log-linear relationships that quantify the degree to which LMs emit memorized training data.
arXiv Detail & Related papers (2022-02-15T18:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.