Heterogeneous virus classification using a functional deep learning model based on transmission electron microscopy images (Preprint)
- URL: http://arxiv.org/abs/2405.15563v1
- Date: Fri, 24 May 2024 13:52:14 GMT
- Title: Heterogeneous virus classification using a functional deep learning model based on transmission electron microscopy images (Preprint)
- Authors: Niloy Sikder, Md. Al-Masrur Khan, Anupam Kumar Bairagi, Mehedi Masud, Jun Jiat Tiang, Abdullah-Al Nahid,
- Abstract summary: The analysis of Transmission Electron Microscopy (TEM) images has been proven to be quite successful in instant virus identification.
This article proposes a deep learning-based classification model to identify the type of virus within those images correctly.
Experimental results show that it can differentiate among the 14 types of viruses present in the dataset with a maximum of 97.44% classification accuracy and F1-score.
- Score: 2.1346640951813165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Viruses are submicroscopic agents that can infect all kinds of lifeforms and use their hosts' living cells to replicate themselves. Despite having some of the simplest genetic structures among all living beings, viruses are highly adaptable, resilient, and given the right conditions, are capable of causing unforeseen complications in their hosts' bodies. Due to their multiple transmission pathways, high contagion rate, and lethality, viruses are the biggest biological threat faced by animal and plant species. It is often challenging to promptly detect the presence of a virus in a possible host's body and accurately determine its type using manual examination techniques; however, it can be done using computer-based automatic diagnosis methods. Most notably, the analysis of Transmission Electron Microscopy (TEM) images has been proven to be quite successful in instant virus identification. Using TEM images collected from a recently published dataset, this article proposes a deep learning-based classification model to identify the type of virus within those images correctly. The methodology of this study includes two coherent image processing techniques to reduce the noise present in the raw microscopy images. Experimental results show that it can differentiate among the 14 types of viruses present in the dataset with a maximum of 97.44% classification accuracy and F1-score, which asserts the effectiveness and reliability of the proposed method. Implementing this scheme will impart a fast and dependable way of virus identification subsidiary to the thorough diagnostic procedures.
Related papers
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Efficient Cavity Searching for Gene Network of Influenza A Virus [8.690486131601075]
High order structures (cavities and cliques) of the gene network of influenza A virus reveal tight associations among viruses during evolution.
We propose a model named HyperSearch based on deep learning to search cavities in a computable complex network for influenza virus genetics.
arXiv Detail & Related papers (2022-11-05T16:24:55Z) - Accurate Virus Identification with Interpretable Raman Signatures by
Machine Learning [12.184128048998906]
We present a machine learning approach for analyzing Raman spectra of human and avian viruses.
A Convolutional Neural Network (CNN) classifier specifically designed for spectral data achieves very high accuracy for a variety of virus type or subtype identification tasks.
arXiv Detail & Related papers (2022-06-05T22:31:14Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Parasitic Egg Detection and Classification in Low-cost Microscopic
Images using Transfer Learning [1.6050172226234583]
We propose a CNN-based technique using transfer learning strategy to enhance the efficiency of automatic parasite classification in poor-quality microscopic images.
Our proposed framework outperforms the state-of-the-art object recognition methods.
Our system combined with final decision from an expert may improve the real faecal examination with low-cost microscopes.
arXiv Detail & Related papers (2021-07-02T11:05:45Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Pixel precise unsupervised detection of viral particle proliferation in
cellular imaging data [0.0]
We use computer generated images from a study of experimentally obtained cell imaging data representing viral particle proliferation in host cell monolayers.
In this study viral particle increase in time is simulated by a one-by-one increase, across images, in black or gray single pixels representing dead or partially infected cells, and hypothetical remission by a one-by-one increase in white pixels coding for living cells.
Unsupervised classification by SOM-QE of 160 model images, each with more than three million pixels, is shown to provide a statistically reliable, pixel precise, and fast classification model.
arXiv Detail & Related papers (2020-11-10T16:06:03Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.