Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
- URL: http://arxiv.org/abs/2405.15613v2
- Date: Fri, 28 Jun 2024 09:22:38 GMT
- Title: Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
- Authors: Huy V. Vo, Vasil Khalidov, Timothée Darcet, Théo Moutakanni, Nikita Smetanin, Marc Szafraniec, Hugo Touvron, Camille Couprie, Maxime Oquab, Armand Joulin, Hervé Jégou, Patrick Labatut, Piotr Bojanowski,
- Abstract summary: We consider the problem of automatic curation of high-quality datasets for self-supervised pre-training.
We propose a clustering-based approach for building ones satisfying all these criteria.
Our method involves successive and hierarchical applications of $k$-means on a large and diverse data repository.
- Score: 36.47860223750303
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of $k$-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data. Code is available at https://github.com/facebookresearch/ssl-data-curation.
Related papers
- Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic [99.3682210827572]
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets.
Data curation strategies are typically developed agnostic of the available compute for training.
We introduce neural scaling laws that account for the non-homogeneous nature of web data.
arXiv Detail & Related papers (2024-04-10T17:27:54Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Designing Data: Proactive Data Collection and Iteration for Machine
Learning [12.295169687537395]
Lack of diversity in data collection has caused significant failures in machine learning (ML) applications.
New methods to track & manage data collection, iteration, and model training are necessary for evaluating whether datasets reflect real world variability.
arXiv Detail & Related papers (2023-01-24T21:40:29Z) - Evaluating and Crafting Datasets Effective for Deep Learning With Data
Maps [0.0]
Training on large datasets often requires excessive system resources and an infeasible amount of time.
For supervised learning, large datasets require more time for manually labeling samples.
We propose a method of curating smaller datasets with comparable out-of-distribution model accuracy after an initial training session.
arXiv Detail & Related papers (2022-08-22T03:30:18Z) - Understanding the World Through Action [91.3755431537592]
I will argue that a general, principled, and powerful framework for utilizing unlabeled data can be derived from reinforcement learning.
I will discuss how such a procedure is more closely aligned with potential downstream tasks.
arXiv Detail & Related papers (2021-10-24T22:33:52Z) - Learning a Self-Expressive Network for Subspace Clustering [15.096251922264281]
We propose a novel framework for subspace clustering, termed Self-Expressive Network (SENet), which employs a properly designed neural network to learn a self-expressive representation of the data.
Our SENet can not only learn the self-expressive coefficients with desired properties on the training data, but also handle out-of-sample data.
In particular, SENet yields highly competitive performance on MNIST, Fashion MNIST and Extended MNIST and state-of-the-art performance on CIFAR-10.
arXiv Detail & Related papers (2021-10-08T18:06:06Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z) - Clustering Time Series Data through Autoencoder-based Deep Learning
Models [1.0499611180329802]
This paper introduces a two-stage method for clustering time series data.
First, a technique is introduced to utilize the characteristics of given time series data in order to create labels.
Second, an autoencoder-based deep learning model is built to learn and model both known and hidden features of time series data.
arXiv Detail & Related papers (2020-04-11T18:51:13Z) - Unshuffling Data for Improved Generalization [65.57124325257409]
Generalization beyond the training distribution is a core challenge in machine learning.
We show that partitioning the data into well-chosen, non-i.i.d. subsets treated as multiple training environments can guide the learning of models with better out-of-distribution generalization.
arXiv Detail & Related papers (2020-02-27T03:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.