FreeMotion: A Unified Framework for Number-free Text-to-Motion Synthesis
- URL: http://arxiv.org/abs/2405.15763v1
- Date: Fri, 24 May 2024 17:57:57 GMT
- Title: FreeMotion: A Unified Framework for Number-free Text-to-Motion Synthesis
- Authors: Ke Fan, Junshu Tang, Weijian Cao, Ran Yi, Moran Li, Jingyu Gong, Jiangning Zhang, Yabiao Wang, Chengjie Wang, Lizhuang Ma,
- Abstract summary: This paper reconsiders motion generation and proposes to unify the single and multi-person motion by the conditional motion distribution.
Based on our framework, the current single-person motion spatial control method could be seamlessly integrated, achieving precise control of multi-person motion.
- Score: 65.85686550683806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-motion synthesis is a crucial task in computer vision. Existing methods are limited in their universality, as they are tailored for single-person or two-person scenarios and can not be applied to generate motions for more individuals. To achieve the number-free motion synthesis, this paper reconsiders motion generation and proposes to unify the single and multi-person motion by the conditional motion distribution. Furthermore, a generation module and an interaction module are designed for our FreeMotion framework to decouple the process of conditional motion generation and finally support the number-free motion synthesis. Besides, based on our framework, the current single-person motion spatial control method could be seamlessly integrated, achieving precise control of multi-person motion. Extensive experiments demonstrate the superior performance of our method and our capability to infer single and multi-human motions simultaneously.
Related papers
- KinMo: Kinematic-aware Human Motion Understanding and Generation [6.962697597686156]
Controlling human motion based on text presents an important challenge in computer vision.
Traditional approaches often rely on holistic action descriptions for motion synthesis.
We propose a novel motion representation that decomposes motion into distinct body joint group movements.
arXiv Detail & Related papers (2024-11-23T06:50:11Z) - MotionGPT-2: A General-Purpose Motion-Language Model for Motion Generation and Understanding [76.30210465222218]
MotionGPT-2 is a unified Large Motion-Language Model (LMLMLM)
It supports multimodal control conditions through pre-trained Large Language Models (LLMs)
It is highly adaptable to the challenging 3D holistic motion generation task.
arXiv Detail & Related papers (2024-10-29T05:25:34Z) - Sitcom-Crafter: A Plot-Driven Human Motion Generation System in 3D Scenes [83.55301458112672]
Sitcom-Crafter is a system for human motion generation in 3D space.
Central to the function generation modules is our novel 3D scene-aware human-human interaction module.
Augmentation modules encompass plot comprehension for command generation, motion synchronization for seamless integration of different motion types.
arXiv Detail & Related papers (2024-10-14T17:56:19Z) - MotionClone: Training-Free Motion Cloning for Controllable Video Generation [41.621147782128396]
MotionClone is a training-free framework that enables motion cloning from reference videos to versatile motion-controlled video generation.
MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency.
arXiv Detail & Related papers (2024-06-08T03:44:25Z) - DiverseMotion: Towards Diverse Human Motion Generation via Discrete
Diffusion [70.33381660741861]
We present DiverseMotion, a new approach for synthesizing high-quality human motions conditioned on textual descriptions.
We show that our DiverseMotion achieves the state-of-the-art motion quality and competitive motion diversity.
arXiv Detail & Related papers (2023-09-04T05:43:48Z) - MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis [73.52948992990191]
MoFusion is a new denoising-diffusion-based framework for high-quality conditional human motion synthesis.
We present ways to introduce well-known kinematic losses for motion plausibility within the motion diffusion framework.
We demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature.
arXiv Detail & Related papers (2022-12-08T18:59:48Z) - SoMoFormer: Social-Aware Motion Transformer for Multi-Person Motion
Prediction [10.496276090281825]
We propose a novel Social-Aware Motion Transformer (SoMoFormer) to model individual motion and social interactions in a joint manner.
SoMoFormer extracts motion features from sub-sequences in displacement trajectory space to learn both local and global pose dynamics for each individual.
In addition, we devise a novel social-aware motion attention mechanism in SoMoFormer to further optimize dynamics representations and capture interaction dependencies simultaneously.
arXiv Detail & Related papers (2022-08-19T08:57:34Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z) - GANimator: Neural Motion Synthesis from a Single Sequence [38.361579401046875]
We present GANimator, a generative model that learns to synthesize novel motions from a single, short motion sequence.
GANimator generates motions that resemble the core elements of the original motion, while simultaneously synthesizing novel and diverse movements.
We show a number of applications, including crowd simulation, key-frame editing, style transfer, and interactive control, which all learn from a single input sequence.
arXiv Detail & Related papers (2022-05-05T13:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.