Finite Groundings for ASP with Functions: A Journey through Consistency
- URL: http://arxiv.org/abs/2405.15794v1
- Date: Wed, 8 May 2024 11:50:08 GMT
- Title: Finite Groundings for ASP with Functions: A Journey through Consistency
- Authors: Lukas Gerlach, David Carral, Markus Hecher,
- Abstract summary: It is known that enhancing ASP with function symbols makes basic reasoning problems highly undecidable.
We show reductions that give an intuition for the high level of undecidability.
These insights allow for a more fine-grained analysis where we characterize ASP programs as "frugal" and "non-proliferous"
- Score: 21.53198582611571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answer set programming (ASP) is a logic programming formalism used in various areas of artificial intelligence like combinatorial problem solving and knowledge representation and reasoning. It is known that enhancing ASP with function symbols makes basic reasoning problems highly undecidable. However, even in simple cases, state of the art reasoners, specifically those relying on a ground-and-solve approach, fail to produce a result. Therefore, we reconsider consistency as a basic reasoning problem for ASP. We show reductions that give an intuition for the high level of undecidability. These insights allow for a more fine-grained analysis where we characterize ASP programs as "frugal" and "non-proliferous". For such programs, we are not only able to semi-decide consistency but we also propose a grounding procedure that yields finite groundings on more ASP programs with the concept of "forbidden" facts.
Related papers
- Explainable Answer-set Programming [0.0]
Project aims to fill some of these gaps and contribute to the state of the art in explainable ASP.
We tackle this by extending the language support of existing approaches but also by the development of novel explanation formalisms.
arXiv Detail & Related papers (2023-08-30T09:09:57Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - The Magic of IF: Investigating Causal Reasoning Abilities in Large
Language Models of Code [74.3873029963285]
Causal reasoning, the ability to identify cause-and-effect relationship, is crucial in human thinking.
We show that Code-LLMs with code prompts are significantly better in causal reasoning.
arXiv Detail & Related papers (2023-05-30T17:02:58Z) - Tools and Methodologies for Verifying Answer Set Programs [0.0]
ASP is a powerful declarative programming paradigm commonly used for solving challenging search and optimization problems.
As an approach to Knowledge Representation and Reasoning, ASP benefits from its simplicity, conciseness and rigorously defined semantics.
My research is concerned with extending the theory and tools supporting the verification of ASP progams.
arXiv Detail & Related papers (2022-08-05T10:50:21Z) - End-to-end Algorithm Synthesis with Recurrent Networks: Logical
Extrapolation Without Overthinking [52.05847268235338]
We show how machine learning systems can perform logical extrapolation without overthinking problems.
We propose a recall architecture that keeps an explicit copy of the problem instance in memory so that it cannot be forgotten.
We also employ a progressive training routine that prevents the model from learning behaviors that are specific to number and instead pushes it to learn behaviors that can be repeated indefinitely.
arXiv Detail & Related papers (2022-02-11T18:43:28Z) - Enforcing Consistency in Weakly Supervised Semantic Parsing [68.2211621631765]
We explore the use of consistency between the output programs for related inputs to reduce the impact of spurious programs.
We find that a more consistent formalism leads to improved model performance even without consistency-based training.
arXiv Detail & Related papers (2021-07-13T03:48:04Z) - Conflict-driven Inductive Logic Programming [3.29505746524162]
The goal of Inductive Logic Programming (ILP) is to learn a program that explains a set of examples.
Until recently, most research on ILP targeted learning Prolog programs.
The ILASP system instead learns Answer Set Programs (ASP)
arXiv Detail & Related papers (2020-12-31T20:24:28Z) - LP2PB: Translating Answer Set Programs into Pseudo-Boolean Theories [0.0]
We present a new tool LP2PB that translates ASP programs into pseudo-Boolean theories.
We evaluate our tool, and the potential of cutting-plane-based solving for ASP on traditional ASP benchmarks.
arXiv Detail & Related papers (2020-09-22T00:50:17Z) - Advancing Lazy-Grounding ASP Solving Techniques -- Restarts, Phase
Saving, Heuristics, and More [3.8673630752805432]
Answer-Set Programming (ASP) is a powerful and expressive knowledge representation paradigm with a significant number of applications in logic-based AI.
Traditional ground-and-solve approach requires ASP programs to be grounded upfront and thus suffers from the so-called grounding bottleneck.
As a remedy, lazy-grounding ASP solvers have been developed, but many state-of-the-art techniques for grounded ASP solving have not been available to them yet.
arXiv Detail & Related papers (2020-08-08T13:55:36Z) - Modelling Multi-Agent Epistemic Planning in ASP [66.76082318001976]
This paper presents an implementation of a multi-shot Answer Set Programming-based planner that can reason in multi-agent epistemic settings.
The paper shows how the planner, exploiting an ad-hoc epistemic state representation and the efficiency of ASP solvers, has competitive performance results on benchmarks collected from the literature.
arXiv Detail & Related papers (2020-08-07T06:35:56Z) - The ILASP system for Inductive Learning of Answer Set Programs [79.41112438865386]
Our system learns Answer Set Programs, including normal rules, choice rules and hard and weak constraints.
We first give a general overview of ILASP's learning framework and its capabilities.
This is followed by a comprehensive summary of the evolution of the ILASP system.
arXiv Detail & Related papers (2020-05-02T19:04:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.