Learning the Language of Protein Structure
- URL: http://arxiv.org/abs/2405.15840v1
- Date: Fri, 24 May 2024 16:03:47 GMT
- Title: Learning the Language of Protein Structure
- Authors: Benoit Gaujac, Jérémie Donà, Liviu Copoiu, Timothy Atkinson, Thomas Pierrot, Thomas D. Barrett,
- Abstract summary: We introduce an approach using a vector-quantized autoencoder that effectively tokenizes protein structures into discrete representations.
To demonstrate the efficacy of our learned representations, we show that a simple GPT model trained on our codebooks can generate novel, diverse, and designable protein structures.
- Score: 8.364087723533537
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Representation learning and \emph{de novo} generation of proteins are pivotal computational biology tasks. Whilst natural language processing (NLP) techniques have proven highly effective for protein sequence modelling, structure modelling presents a complex challenge, primarily due to its continuous and three-dimensional nature. Motivated by this discrepancy, we introduce an approach using a vector-quantized autoencoder that effectively tokenizes protein structures into discrete representations. This method transforms the continuous, complex space of protein structures into a manageable, discrete format with a codebook ranging from 4096 to 64000 tokens, achieving high-fidelity reconstructions with backbone root mean square deviations (RMSD) of approximately 1-5 \AA. To demonstrate the efficacy of our learned representations, we show that a simple GPT model trained on our codebooks can generate novel, diverse, and designable protein structures. Our approach not only provides representations of protein structure, but also mitigates the challenges of disparate modal representations and sets a foundation for seamless, multi-modal integration, enhancing the capabilities of computational methods in protein design.
Related papers
- FoldToken: Learning Protein Language via Vector Quantization and Beyond [56.19308144551836]
We introduce textbfFoldTokenizer to represent protein sequence-structure as discrete symbols.
We refer to the learned symbols as textbfFoldToken, and the sequence of FoldTokens serves as a new protein language.
arXiv Detail & Related papers (2024-02-04T12:18:51Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
We introduce a novel framework that enhances protein language models by integrating protein structural data.
The refined model, termed Protein Structure Transformer (PST), is further pretrained on a small protein structure database.
PST consistently outperforms the state-of-the-art foundation model for protein sequences, ESM-2, setting a new benchmark in protein function prediction.
arXiv Detail & Related papers (2024-01-26T12:47:54Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering
the Language of Protein [76.18058946124111]
We propose a unified protein language model, xTrimoPGLM, to address protein understanding and generation tasks simultaneously.
xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories.
It can also generate de novo protein sequences following the principles of natural ones, and can perform programmable generation after supervised fine-tuning.
arXiv Detail & Related papers (2024-01-11T15:03:17Z) - A Systematic Study of Joint Representation Learning on Protein Sequences
and Structures [38.94729758958265]
Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein functions.
Recent sequence representation learning methods based on Protein Language Models (PLMs) excel in sequence-based tasks, but their direct adaptation to tasks involving protein structures remains a challenge.
Our study undertakes a comprehensive exploration of joint protein representation learning by integrating a state-of-the-art PLM with distinct structure encoders.
arXiv Detail & Related papers (2023-03-11T01:24:10Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.