ExactDreamer: High-Fidelity Text-to-3D Content Creation via Exact Score Matching
- URL: http://arxiv.org/abs/2405.15914v1
- Date: Fri, 24 May 2024 20:19:45 GMT
- Title: ExactDreamer: High-Fidelity Text-to-3D Content Creation via Exact Score Matching
- Authors: Yumin Zhang, Xingyu Miao, Haoran Duan, Bo Wei, Tejal Shah, Yang Long, Rajiv Ranjan,
- Abstract summary: Current approaches often adapt pre-trained 2D diffusion models for 3D synthesis.
Over-smoothing poses a significant limitation on the high-fidelity generation of 3D models.
LucidDreamer replaces the Denoising Diffusion Probabilistic Model (DDPM) in SDS with the Denoising Diffusion Implicit Model (DDIM)
- Score: 10.362259643427526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-3D content creation is a rapidly evolving research area. Given the scarcity of 3D data, current approaches often adapt pre-trained 2D diffusion models for 3D synthesis. Among these approaches, Score Distillation Sampling (SDS) has been widely adopted. However, the issue of over-smoothing poses a significant limitation on the high-fidelity generation of 3D models. To address this challenge, LucidDreamer replaces the Denoising Diffusion Probabilistic Model (DDPM) in SDS with the Denoising Diffusion Implicit Model (DDIM) to construct Interval Score Matching (ISM). However, ISM inevitably inherits inconsistencies from DDIM, causing reconstruction errors during the DDIM inversion process. This results in poor performance in the detailed generation of 3D objects and loss of content. To alleviate these problems, we propose a novel method named Exact Score Matching (ESM). Specifically, ESM leverages auxiliary variables to mathematically guarantee exact recovery in the DDIM reverse process. Furthermore, to effectively capture the dynamic changes of the original and auxiliary variables, the LoRA of a pre-trained diffusion model implements these exact paths. Extensive experiments demonstrate the effectiveness of ESM in text-to-3D generation, particularly highlighting its superiority in detailed generation.
Related papers
- FlowDreamer: Exploring High Fidelity Text-to-3D Generation via Rectified Flow [17.919092916953183]
We propose a novel framework, named FlowDreamer, which yields high fidelity results with richer textual details and faster convergence.
Key insight is to leverage the coupling and reversible properties of the rectified flow model to search for the corresponding noise.
We introduce a novel Unique Matching Couple (UCM) loss, which guides the 3D model to optimize along the same trajectory.
arXiv Detail & Related papers (2024-08-09T11:40:20Z) - VividDreamer: Invariant Score Distillation For Hyper-Realistic Text-to-3D Generation [33.05759961083337]
This paper presents Invariant Score Distillation (ISD), a novel method for high-fidelity text-to-3D generation.
ISD aims to tackle the over-saturation and over-smoothing problems in Score Distillation Sampling (SDS)
arXiv Detail & Related papers (2024-07-13T09:33:16Z) - VividDreamer: Towards High-Fidelity and Efficient Text-to-3D Generation [69.68568248073747]
We propose Pose-dependent Consistency Distillation Sampling (PCDS), a novel yet efficient objective for diffusion-based 3D generation tasks.
PCDS builds the pose-dependent consistency function within diffusion trajectories, allowing to approximate true gradients through minimal sampling steps.
For efficient generation, we propose a coarse-to-fine optimization strategy, which first utilizes 1-step PCDS to create the basic structure of 3D objects, and then gradually increases PCDS steps to generate fine-grained details.
arXiv Detail & Related papers (2024-06-21T08:21:52Z) - Score Distillation via Reparametrized DDIM [14.754513907729878]
We show that the image guidance used in Score Distillation Sampling can be understood as the velocity field of a 2D denoising generative process.
We show that a better noise approximation can be recovered by inverting DDIM in each SDS update step.
Our method achieves better or similar 3D generation quality compared to other state-of-the-art Score Distillation methods.
arXiv Detail & Related papers (2024-05-24T19:22:09Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce two novel components: the Redundant Feature Eliminator (RFE) and the Spatial Noise Compensator (SNC)
Considering the imbalance in existing 3D datasets, we also propose new evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
We propose a unified framework aimed at enhancing the diffusion priors for 3D generation tasks.
We identify a divergence between the diffusion priors and the training procedures of diffusion models that substantially impairs the quality of 3D generation.
arXiv Detail & Related papers (2023-12-08T03:55:34Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval
Score Matching [33.696757740830506]
Recent advancements in text-to-3D generation have shown promise.
Many methods base themselves on Score Distillation Sampling (SDS)
We propose Interval Score Matching (ISM) to counteract over-smoothing.
arXiv Detail & Related papers (2023-11-19T09:59:09Z) - Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online
Adaptation [87.85851771425325]
We consider a new problem of adapting a human mesh reconstruction model to out-of-domain streaming videos.
We tackle this problem through online adaptation, gradually correcting the model bias during testing.
We propose the Dynamic Bilevel Online Adaptation algorithm (DynaBOA)
arXiv Detail & Related papers (2021-11-07T07:23:24Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.