Steerable Transformers
- URL: http://arxiv.org/abs/2405.15932v1
- Date: Fri, 24 May 2024 20:43:19 GMT
- Title: Steerable Transformers
- Authors: Soumyabrata Kundu, Risi Kondor,
- Abstract summary: We introduce Steerable Transformers, an extension of the Vision Transformer mechanism.
We propose an equivariant attention mechanism that operates on features extracted by steerable convolutions.
- Score: 5.564976582065106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we introduce Steerable Transformers, an extension of the Vision Transformer mechanism that maintains equivariance to the special Euclidean group $\mathrm{SE}(d)$. We propose an equivariant attention mechanism that operates on features extracted by steerable convolutions. Operating in Fourier space, our network utilizes Fourier space non-linearities. Our experiments in both two and three dimensions show that adding a steerable transformer encoder layer to a steerable convolution network enhances performance.
Related papers
- 2-D SSM: A General Spatial Layer for Visual Transformers [79.4957965474334]
A central objective in computer vision is to design models with appropriate 2-D inductive bias.
We leverage an expressive variation of the multidimensional State Space Model.
Our approach introduces efficient parameterization, accelerated computation, and a suitable normalization scheme.
arXiv Detail & Related papers (2023-06-11T09:41:37Z) - Approximation and Estimation Ability of Transformers for
Sequence-to-Sequence Functions with Infinite Dimensional Input [50.83356836818667]
We study the approximation and estimation ability of Transformers as sequence-to-sequence functions with infinite dimensional inputs.
Our theoretical results support the practical success of Transformers for high dimensional data.
arXiv Detail & Related papers (2023-05-30T02:44:49Z) - Towards Lightweight Transformer via Group-wise Transformation for
Vision-and-Language Tasks [126.33843752332139]
We introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer.
We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets.
Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks.
arXiv Detail & Related papers (2022-04-16T11:30:26Z) - SepTr: Separable Transformer for Audio Spectrogram Processing [74.41172054754928]
We propose a new vision transformer architecture called Separable Transformer (SepTr)
SepTr employs two transformer blocks in a sequential manner, the first attending to tokens within the same frequency bin, and the second attending to tokens within the same time interval.
We conduct experiments on three benchmark data sets, showing that our architecture outperforms conventional vision transformers and other state-of-the-art methods.
arXiv Detail & Related papers (2022-03-17T19:48:43Z) - Redesigning the Transformer Architecture with Insights from
Multi-particle Dynamical Systems [32.86421107987556]
We build upon recent developments in analyzing deep neural networks as numerical solvers of ordinary differential equations.
We formulate a temporal evolution scheme, TransEvolve, to bypass costly dot-product attention over multiple stacked layers.
We perform exhaustive experiments with TransEvolve on well-known encoder-decoder as well as encoder-only tasks.
arXiv Detail & Related papers (2021-09-30T14:01:06Z) - Scalable Transformers for Neural Machine Translation [86.4530299266897]
Transformer has been widely adopted in Neural Machine Translation (NMT) because of its large capacity and parallel training of sequence generation.
We propose a novel scalable Transformers, which naturally contains sub-Transformers of different scales and have shared parameters.
A three-stage training scheme is proposed to tackle the difficulty of training the scalable Transformers.
arXiv Detail & Related papers (2021-06-04T04:04:10Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.