Robust width: A lightweight and certifiable adversarial defense
- URL: http://arxiv.org/abs/2405.15971v1
- Date: Fri, 24 May 2024 22:50:50 GMT
- Title: Robust width: A lightweight and certifiable adversarial defense
- Authors: Jonathan Peck, Bart Goossens,
- Abstract summary: Adversarial examples are intentionally constructed to cause the model to make incorrect predictions or classifications.
In this work, we study an adversarial defense based on the robust width property (RWP), which was recently introduced for compressed sensing.
We show that a specific input purification scheme based on the RWP gives theoretical robustness guarantees for images that are approximately sparse.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are vulnerable to so-called adversarial examples: inputs which are intentionally constructed to cause the model to make incorrect predictions or classifications. Adversarial examples are often visually indistinguishable from natural data samples, making them hard to detect. As such, they pose significant threats to the reliability of deep learning systems. In this work, we study an adversarial defense based on the robust width property (RWP), which was recently introduced for compressed sensing. We show that a specific input purification scheme based on the RWP gives theoretical robustness guarantees for images that are approximately sparse. The defense is easy to implement and can be applied to any existing model without additional training or finetuning. We empirically validate the defense on ImageNet against $L^\infty$ perturbations at perturbation budgets ranging from $4/255$ to $32/255$. In the black-box setting, our method significantly outperforms the state-of-the-art, especially for large perturbations. In the white-box setting, depending on the choice of base classifier, we closely match the state of the art in robust ImageNet classification while avoiding the need for additional data, larger models or expensive adversarial training routines. Our code is available at https://github.com/peck94/robust-width-defense.
Related papers
- Improving Adversarial Robustness via Decoupled Visual Representation Masking [65.73203518658224]
In this paper, we highlight two novel properties of robust features from the feature distribution perspective.
We find that state-of-the-art defense methods aim to address both of these mentioned issues well.
Specifically, we propose a simple but effective defense based on decoupled visual representation masking.
arXiv Detail & Related papers (2024-06-16T13:29:41Z) - The Best Defense is a Good Offense: Adversarial Augmentation against
Adversarial Attacks [91.56314751983133]
$A5$ is a framework to craft a defensive perturbation to guarantee that any attack towards the input in hand will fail.
We show effective on-the-fly defensive augmentation with a robustifier network that ignores the ground truth label.
We also show how to apply $A5$ to create certifiably robust physical objects.
arXiv Detail & Related papers (2023-05-23T16:07:58Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Practical No-box Adversarial Attacks against DNNs [31.808770437120536]
We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model.
We propose three mechanisms for training with a very small dataset and find that prototypical reconstruction is the most effective.
Our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
arXiv Detail & Related papers (2020-12-04T11:10:03Z) - Adversarial Robustness Across Representation Spaces [35.58913661509278]
Adversa robustness corresponds to the susceptibility of deep neural networks to imperceptible perturbations made at test time.
In this work we extend the setting to consider the problem of training of deep neural networks that can be made simultaneously robust to perturbations applied in multiple natural representation spaces.
arXiv Detail & Related papers (2020-12-01T19:55:58Z) - Almost Tight L0-norm Certified Robustness of Top-k Predictions against
Adversarial Perturbations [78.23408201652984]
Top-k predictions are used in many real-world applications such as machine learning as a service, recommender systems, and web searches.
Our work is based on randomized smoothing, which builds a provably robust classifier via randomizing an input.
For instance, our method can build a classifier that achieves a certified top-3 accuracy of 69.2% on ImageNet when an attacker can arbitrarily perturb 5 pixels of a testing image.
arXiv Detail & Related papers (2020-11-15T21:34:44Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Towards Deep Learning Models Resistant to Large Perturbations [0.0]
Adversarial robustness has proven to be a required property of machine learning algorithms.
We show that the well-established algorithm called "adversarial training" fails to train a deep neural network given a large, but reasonable, perturbation magnitude.
arXiv Detail & Related papers (2020-03-30T12:03:09Z) - Are L2 adversarial examples intrinsically different? [14.77179227968466]
We unravel the properties that can intrinsically differentiate adversarial examples and normal inputs through theoretical analysis.
We achieve a recovered classification accuracy of up to 99% on MNIST, 89% on CIFAR, and 87% on ImageNet subsets against $L$ attacks.
arXiv Detail & Related papers (2020-02-28T03:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.