Understanding the Impact of Training Set Size on Animal Re-identification
- URL: http://arxiv.org/abs/2405.15976v1
- Date: Fri, 24 May 2024 23:15:52 GMT
- Title: Understanding the Impact of Training Set Size on Animal Re-identification
- Authors: Aleksandr Algasov, Ekaterina Nepovinnykh, Tuomas Eerola, Heikki Kälviäinen, Charles V. Stewart, Lasha Otarashvili, Jason A. Holmberg,
- Abstract summary: We show that species-specific characteristics, particularly intra-individual variance, have a notable effect on training data requirements.
We demonstrate the benefits of both local feature and end-to-end learning-based approaches.
- Score: 36.37275024049744
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in the automatic re-identification of animal individuals from images have opened up new possibilities for studying wildlife through camera traps and citizen science projects. Existing methods leverage distinct and permanent visual body markings, such as fur patterns or scars, and typically employ one of two strategies: local features or end-to-end learning. In this study, we delve into the impact of training set size by conducting comprehensive experiments across six different methods and five animal species. While it is well known that end-to-end learning-based methods surpass local feature-based methods given a sufficient amount of good-quality training data, the challenge of gathering such datasets for wildlife animals means that local feature-based methods remain a more practical approach for many species. We demonstrate the benefits of both local feature and end-to-end learning-based approaches and show that species-specific characteristics, particularly intra-individual variance, have a notable effect on training data requirements.
Related papers
- Generalization in birdsong classification: impact of transfer learning methods and dataset characteristics [2.6740633963478095]
We explore the effectiveness of transfer learning in large-scale bird sound classification.
Our experiments demonstrate that both fine-tuning and knowledge distillation yield strong performance.
We advocate for more comprehensive labeling practices within the animal sound community.
arXiv Detail & Related papers (2024-09-21T11:33:12Z) - Active Learning-Based Species Range Estimation [20.422188189640053]
We propose a new active learning approach for efficiently estimating the geographic range of a species from a limited number of on the ground observations.
We show that it is possible to generate this candidate set of ranges by using models that have been trained on large weakly supervised community collected observation data.
We conduct a detailed evaluation of our approach and compare it to existing active learning methods using an evaluation dataset containing expert-derived ranges for one thousand species.
arXiv Detail & Related papers (2023-11-03T17:45:18Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe.
Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts.
Reducing the reliance on costly labelled data has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor.
arXiv Detail & Related papers (2023-11-02T08:32:00Z) - CLAMP: Prompt-based Contrastive Learning for Connecting Language and
Animal Pose [70.59906971581192]
We introduce a novel prompt-based Contrastive learning scheme for connecting Language and AniMal Pose effectively.
The CLAMP attempts to bridge the gap by adapting the text prompts to the animal keypoints during network training.
Experimental results show that our method achieves state-of-the-art performance under the supervised, few-shot, and zero-shot settings.
arXiv Detail & Related papers (2022-06-23T14:51:42Z) - Deep learning with self-supervision and uncertainty regularization to
count fish in underwater images [28.261323753321328]
Effective conservation actions require effective population monitoring.
Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive.
Counting animals from such data is challenging, particularly when densely packed in noisy images.
Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals.
arXiv Detail & Related papers (2021-04-30T13:02:19Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
We formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features.
Our method produces state-of-the-art results in several challenging landmark detection datasets.
arXiv Detail & Related papers (2021-04-07T05:42:11Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
We propose a unified distribution alignment strategy for long-tail visual recognition.
We then introduce a generalized re-weight method in the two-stage learning to balance the class prior.
Our approach achieves the state-of-the-art results across all four recognition tasks with a simple and unified framework.
arXiv Detail & Related papers (2021-03-30T14:09:53Z) - Fine-grained Species Recognition with Privileged Pooling: Better Sample
Efficiency Through Supervised Attention [26.136331738529243]
We propose a scheme for supervised image classification that uses privileged information in the form of keypoint annotations for the training data.
Our main motivation is the recognition of animal species for ecological applications such as biodiversity modelling.
In experiments with three different animal species datasets, we show that deep networks with privileged pooling can use small training sets more efficiently and generalize better.
arXiv Detail & Related papers (2020-03-20T10:03:01Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
We show that it is possible to transfer the knowledge existing in dense pose recognition for humans, as well as in more general object detectors and segmenters, to the problem of dense pose recognition in other classes.
We do this by establishing a DensePose model for the new animal which is also geometrically aligned to humans.
We also introduce two benchmark datasets labelled in the manner of DensePose for the class chimpanzee and use them to evaluate our approach.
arXiv Detail & Related papers (2020-02-28T21:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.