Data Complexity Estimates for Operator Learning
- URL: http://arxiv.org/abs/2405.15992v2
- Date: Thu, 17 Oct 2024 19:55:36 GMT
- Title: Data Complexity Estimates for Operator Learning
- Authors: Nikola B. Kovachki, Samuel Lanthaler, Hrushikesh Mhaskar,
- Abstract summary: We develop theory to study the data complexity of operator learning.
We show that on a narrower class of operators, efficiently approximated by FNO in terms of the number of tunable parameters, efficient operator learning is attainable in data complexity as well.
- Score: 4.056627267544063
- License:
- Abstract: Operator learning has emerged as a new paradigm for the data-driven approximation of nonlinear operators. Despite its empirical success, the theoretical underpinnings governing the conditions for efficient operator learning remain incomplete. The present work develops theory to study the data complexity of operator learning, complementing existing research on the parametric complexity. We investigate the fundamental question: How many input/output samples are needed in operator learning to achieve a desired accuracy $\epsilon$? This question is addressed from the point of view of $n$-widths, and this work makes two key contributions. The first contribution is to derive lower bounds on $n$-widths for general classes of Lipschitz and Fr\'echet differentiable operators. These bounds rigorously demonstrate a ``curse of data-complexity'', revealing that learning on such general classes requires a sample size exponential in the inverse of the desired accuracy $\epsilon$. The second contribution of this work is to show that ``parametric efficiency'' implies ``data efficiency''; using the Fourier neural operator (FNO) as a case study, we show rigorously that on a narrower class of operators, efficiently approximated by FNO in terms of the number of tunable parameters, efficient operator learning is attainable in data complexity as well. Specifically, we show that if only an algebraically increasing number of tunable parameters is needed to reach a desired approximation accuracy, then an algebraically bounded number of data samples is also sufficient to achieve the same accuracy.
Related papers
- Basis-to-Basis Operator Learning Using Function Encoders [16.128154294012543]
We present Basis-to-Basis (B2B) operator learning, a novel approach for learning operators on Hilbert spaces of functions.
We derive operator learning algorithms that are directly analogous to eigen-decomposition and singular value decomposition.
arXiv Detail & Related papers (2024-09-30T19:18:34Z) - Operator Learning Using Random Features: A Tool for Scientific Computing [3.745868534225104]
Supervised operator learning centers on the use of training data to estimate maps between infinite-dimensional spaces.
This paper introduces the function-valued random features method.
It leads to a supervised operator learning architecture that is practical for nonlinear problems.
arXiv Detail & Related papers (2024-08-12T23:10:39Z) - Discovering symbolic expressions with parallelized tree search [59.92040079807524]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.
Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity.
We introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - Operator Learning of Lipschitz Operators: An Information-Theoretic Perspective [2.375038919274297]
This work addresses the complexity of neural operator approximations for the general class of Lipschitz continuous operators.
Our main contribution establishes lower bounds on the metric entropy of Lipschitz operators in two approximation settings.
It is shown that, regardless of the activation function used, neural operator architectures attaining an approximation accuracy $epsilon$ must have a size that is exponentially large in $epsilon-1$.
arXiv Detail & Related papers (2024-06-26T23:36:46Z) - MODNO: Multi Operator Learning With Distributed Neural Operators [0.8702432681310401]
The study of operator learning involves the utilization of neural networks to approximate operators.
Recent advances have led to the approximation of multiple operators using foundation models equipped with millions or billions of trainable parameters.
We present a novel distributed training approach aimed at enabling a single neural operator with significantly fewer parameters to tackle multi-operator learning challenges.
arXiv Detail & Related papers (2024-04-03T17:49:41Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
We build on intuition that neural operator learning inherently induces an approximation error.
We show that our approach reduces GPU memory usage by up to 50% and improves throughput by 58% with little or no reduction in accuracy.
arXiv Detail & Related papers (2023-07-27T17:42:06Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - The Parametric Complexity of Operator Learning [6.800286371280922]
This paper aims to prove that for general classes of operators which are characterized only by their $Cr$- or Lipschitz-regularity, operator learning suffers from a curse of parametric complexity''
The second contribution of the paper is to prove that this general curse can be overcome for solution operators defined by the Hamilton-Jacobi equation.
A novel neural operator architecture is introduced, termed HJ-Net, which explicitly takes into account characteristic information of the underlying Hamiltonian system.
arXiv Detail & Related papers (2023-06-28T05:02:03Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Statistically Meaningful Approximation: a Case Study on Approximating
Turing Machines with Transformers [50.85524803885483]
This work proposes a formal definition of statistically meaningful (SM) approximation which requires the approximating network to exhibit good statistical learnability.
We study SM approximation for two function classes: circuits and Turing machines.
arXiv Detail & Related papers (2021-07-28T04:28:55Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.