GeneAgent: Self-verification Language Agent for Gene Set Knowledge Discovery using Domain Databases
- URL: http://arxiv.org/abs/2405.16205v1
- Date: Sat, 25 May 2024 12:35:15 GMT
- Title: GeneAgent: Self-verification Language Agent for Gene Set Knowledge Discovery using Domain Databases
- Authors: Zhizheng Wang, Qiao Jin, Chih-Hsuan Wei, Shubo Tian, Po-Ting Lai, Qingqing Zhu, Chi-Ping Day, Christina Ross, Zhiyong Lu,
- Abstract summary: We present GeneAgent, a first-of-its-kind language agent featuring self-verification capability.
It autonomously interacts with various biological databases to improve accuracy and reduce hallucination occurrences.
Benchmarking on 1,106 gene sets from different sources, GeneAgent consistently outperforms standard GPT-4 by a significant margin.
- Score: 5.831842925038342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gene set knowledge discovery is essential for advancing human functional genomics. Recent studies have shown promising performance by harnessing the power of Large Language Models (LLMs) on this task. Nonetheless, their results are subject to several limitations common in LLMs such as hallucinations. In response, we present GeneAgent, a first-of-its-kind language agent featuring self-verification capability. It autonomously interacts with various biological databases and leverages relevant domain knowledge to improve accuracy and reduce hallucination occurrences. Benchmarking on 1,106 gene sets from different sources, GeneAgent consistently outperforms standard GPT-4 by a significant margin. Moreover, a detailed manual review confirms the effectiveness of the self-verification module in minimizing hallucinations and generating more reliable analytical narratives. To demonstrate its practical utility, we apply GeneAgent to seven novel gene sets derived from mouse B2905 melanoma cell lines, with expert evaluations showing that GeneAgent offers novel insights into gene functions and subsequently expedites knowledge discovery.
Related papers
- BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Evaluation of large language models for discovery of gene set function [0.8864741602534821]
We evaluate five Large Language Models (LLMs) for their ability to discover the common biological functions represented by a gene set.
Benchmarking against canonical gene sets from the Gene Ontology, GPT-4 confidently recovered the curated name or a more general concept.
In gene sets derived from 'omics data, GPT-4 identified novel functions not reported by classical functional enrichment.
arXiv Detail & Related papers (2023-09-07T21:10:48Z) - SemanticCAP: Chromatin Accessibility Prediction Enhanced by Features
Learning from a Language Model [3.0643865202019698]
We propose a new solution named SemanticCAP to identify accessible regions of the genome.
It introduces a gene language model which models the context of gene sequences, thus being able to provide an effective representation of gene sequences.
Compared with other systems under public benchmarks, our model proved to have better performance.
arXiv Detail & Related papers (2022-04-05T11:47:58Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z) - Feature reduction for machine learning on molecular features: The
GeneScore [58.720142291102135]
The GeneScore is a concept of feature reduction for Machine Learning analysis of biomedical data.
We show that the GeneScore is superior to a binary matrix in the classification of cancer entities.
arXiv Detail & Related papers (2021-01-14T10:58:39Z) - SimpleChrome: Encoding of Combinatorial Effects for Predicting Gene
Expression [8.326669256957352]
We present SimpleChrome, a deep learning model that learns the histone modification representations of genes.
The features learned from the model allow us to better understand the latent effects of cross-gene interactions and direct gene regulation on the target gene expression.
arXiv Detail & Related papers (2020-12-15T23:30:36Z) - Mining Functionally Related Genes with Semi-Supervised Learning [0.0]
We introduce a rich set of features and use them in conjunction with semisupervised learning approaches.
The framework of learning with positive and unlabeled examples (LPU) is shown to be especially appropriate for mining functionally related genes.
arXiv Detail & Related papers (2020-11-05T20:34:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.