When simplicity meets effectiveness: Detecting code comments coherence with word embeddings and LSTM
- URL: http://arxiv.org/abs/2405.16272v2
- Date: Tue, 28 May 2024 19:58:18 GMT
- Title: When simplicity meets effectiveness: Detecting code comments coherence with word embeddings and LSTM
- Authors: Michael Dubem Igbomezie, Phuong T. Nguyen, Davide Di Ruscio,
- Abstract summary: Code comments play a crucial role in software development, as they provide programmers with practical information.
Developers tend to leave comments unchanged after updating the code, resulting in a discrepancy between the two artifacts.
It is crucial to identify if, given a code snippet, its corresponding comment is coherent and reflects well the intent behind the code.
- Score: 6.417777780911223
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Code comments play a crucial role in software development, as they provide programmers with practical information, allowing them to understand better the intent and semantics of the underpinning code. Nevertheless, developers tend to leave comments unchanged after updating the code, resulting in a discrepancy between the two artifacts. Such a discrepancy may trigger misunderstanding and confusion among developers, impeding various activities, including code comprehension and maintenance. Thus, it is crucial to identify if, given a code snippet, its corresponding comment is coherent and reflects well the intent behind the code. Unfortunately, existing approaches to this problem, while obtaining an encouraging performance, either rely on heavily pre-trained models, or treat input data as text, neglecting the intrinsic features contained in comments and code, including word order and synonyms. This work presents Co3D as a practical approach to the detection of code comment coherence. We pay attention to internal meaning of words and sequential order of words in text while predicting coherence in code-comment pairs. We deployed a combination of Gensim word2vec encoding and a simple recurrent neural network, a combination of Gensim word2vec encoding and an LSTM model, and CodeBERT. The experimental results show that Co3D obtains a promising prediction performance, thus outperforming well-established baselines. We conclude that depending on the context, using a simple architecture can introduce a satisfying prediction.
Related papers
- Soft-Labeled Contrastive Pre-training for Function-level Code
Representation [127.71430696347174]
We present textbfSCodeR, a textbfSoft-labeled contrastive pre-training framework with two positive sample construction methods.
Considering the relevance between codes in a large-scale code corpus, the soft-labeled contrastive pre-training can obtain fine-grained soft-labels.
SCodeR achieves new state-of-the-art performance on four code-related tasks over seven datasets.
arXiv Detail & Related papers (2022-10-18T05:17:37Z) - Code Comment Inconsistency Detection with BERT and Longformer [9.378041196272878]
Comments, or natural language descriptions of source code, are standard practice among software developers.
When the code is modified without an accompanying correction to the comment, an inconsistency between the comment and code can arise.
We propose two models to detect such inconsistencies in a natural language inference (NLI) context.
arXiv Detail & Related papers (2022-07-29T02:43:51Z) - NS3: Neuro-Symbolic Semantic Code Search [33.583344165521645]
We use a Neural Module Network architecture to implement this idea.
We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods.
We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries.
arXiv Detail & Related papers (2022-05-21T20:55:57Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z) - CodeRetriever: Unimodal and Bimodal Contrastive Learning [128.06072658302165]
We propose the CodeRetriever model, which combines the unimodal and bimodal contrastive learning to train function-level code semantic representations.
For unimodal contrastive learning, we design a semantic-guided method to build positive code pairs based on the documentation and function name.
For bimodal contrastive learning, we leverage the documentation and in-line comments of code to build text-code pairs.
arXiv Detail & Related papers (2022-01-26T10:54:30Z) - Deep Just-In-Time Inconsistency Detection Between Comments and Source
Code [51.00904399653609]
In this paper, we aim to detect whether a comment becomes inconsistent as a result of changes to the corresponding body of code.
We develop a deep-learning approach that learns to correlate a comment with code changes.
We show the usefulness of our approach by combining it with a comment update model to build a more comprehensive automatic comment maintenance system.
arXiv Detail & Related papers (2020-10-04T16:49:28Z) - CodeBLEU: a Method for Automatic Evaluation of Code Synthesis [57.87741831987889]
In the area of code synthesis, the commonly used evaluation metric is BLEU or perfect accuracy.
We introduce a new automatic evaluation metric, dubbed CodeBLEU.
It absorbs the strength of BLEU in the n-gram match and further injects code syntax via abstract syntax trees (AST) and code semantics via data-flow.
arXiv Detail & Related papers (2020-09-22T03:10:49Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code.
We use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement.
arXiv Detail & Related papers (2020-09-17T15:25:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.